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Input: We are given a graph G = (V,E) and a percolation states vector
x = (x1, x2, . . . , xn) ∈ [0, 1]n

Goal: Compute the percolation centrality of each node v ∈ V

Our Problem
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Input: We are given a graph G = (V,E) and a percolation states vector
x = (x1, x2, . . . , xn) ∈ [0, 1]n

Goal: Compute the percolation centrality of each node v ∈ V

p(v) =
∑
s̸=t

σst(v)

σst

· κ(s, t, v) ∈ [0, 1]

Where
• σst(v) is the number of shortest paths between s and t passing through v
• σst is the number of shortest paths between s and t
• κ(s, t, v) is defined as

κ(s, t, v) =
R(xs − xt)∑

u̸=v ̸=w R(xu − xw)
• R(x) = max(0, x)

Our Problem

[Piraveenan et al., PloS one]



Practical Issue: The exact computation of the percolation centrality requires Ω(n2)
time (lower bound)!

Our Goal: given an ε ∈ (0, 1), compute an ε-approximation {p̃(v) , v ∈ V } of the
percolation centrality for each node:

|p̃(v)− p(v)| ≤ ε, ∀v ∈ V

Our Problem

IMPRACTICAL!



State of the art

Estimating the Percolation Centrality of Large Networks through Pseudo-dimension
Theory [de Lima et al,KDD’20]

Their results in a nutshell

They use uniform sampling (UNIF) to approximate:

p⋆(v) =
1

n(n− 1)

∑
s̸=t

σst(v)

σst

· κ(s, t, v) ∈
[
0,

1

n(n− 1)

]
Sample size of

ℓ =
0.5

ε2
(⌈log(D)− 2⌉+ 1− ln δ)

To achieve an ε-approximation with probability ≥ 1− δ



Some issues with the SOTA

p⋆(v) =
1

n(n− 1)

∑
s̸=t

σst(v)

σst

· κ(s, t, v) ∈
[
0,

1

n(n− 1)

]

ε ≥ 1
n(n−1)

ε < 1
n(n−1)

Is uninformative! Is enough to
directly output
{p̃⋆(v) = 0, ∀v ∈ V }

We need ℓ ∈ Ω(n4) samples!

No truly effective algorithm exists to approximate the percolation centrality.



Why IS and not UNIF?

κ(s, t, v) =
R(xs − xt)∑

u̸=v ̸=w R(xu − xw)
= 0

Observation: given s and t in G, if xs ≤ xt then:

Graph GPercolation states
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We need a “big”
sample size to pick
the red or the
light-red nodes as
sources using UNIF!

Sampling s, t with xs ≤ xt is useless!

Toy example:

IS boosts the
sampling of such
points, obtaining
more accurate
estimates

Uniform sampling has high variance



Our Approach

A new algorithm called PercIS based on Importance Sampling that returns an
ε-approximation with probability ≥ 1− δ efficiently, thanks to new sharp sample size
bounds.



Importance Sampling

We use Importance Sampling

We want to approximate an expectation

µ = Ep[f(X)] =
∑
x

f(x)p(x)

Problem: Sampling from p might be inefficient

Idea: Sample from an importance distribution q which emphasizes “important”
regions.

Ep[f(X)] = Eq

[
f(X)

p(X)

q(X)

]

p

q

d̂ = max
x:q(x)>0

p(x)

q(x)

The quality of our importance distribution is



We define κ̃ : V × V → [0, 1]

κ̃(s, t) =
R(xs − xt)∑

u̸=w R(xu − xw)

κ̃ is a valid distribution over all couples of nodes

For any shortest path τst between nodes s and t, we define the importance distribution
q as:

q(τst) =
κ̃(s, t)

σst

, For all shortest paths τst of G

PercIS: Importance Sampling Distribution

Idea: sample s and t with probability κ(s, t, v)

Challenge: we want to estimate n averages (the set {p(v), v ∈ V }) simultaneously,
but the weights κ(s, t, v) depend on v!



PercIS: sampling from q

Problem: sampling s, t with probability κ̃(s, t)
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1) Sample s with marginal Pr(s) =
∑
u

κ̃(s, u)

2) Sample t with Pr(t | s) = κ̃(s, t)∑
u κ̃(s, u)

PercIS: sampling from q

Problem: sampling s, t with probability κ̃(s, t)
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1) Sample s with marginal

2) Sample t with Pr(t | s) = κ̃(s, t)∑
u κ̃(s, u)

3) Perform a Bidirectional Balanced BFS from s and t

Pr(s) =
∑
u

κ̃(s, u)

PercIS: sampling from q

Problem: sampling s, t with probability κ̃(s, t)
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1) Sample s with marginal

2) Sample t with Pr(t | s) = κ̃(s, t)∑
u κ̃(s, u)

3) Perform a Bidirectional Balanced BFS from s and t

4) Pick a shortest path τst u.a.r.

PercIS correctly draws ℓ samples from q in time
O(n+ ℓ(log n+ TBBFS)) and space O(n+m)

Pr(s) =
∑
u

κ̃(s, u)

PercIS: sampling from q

Problem: sampling s, t with probability κ̃(s, t)



PercIS: the Estimator

Given a collection of shortest paths S = {τ 1, τ 2, . . . , τ ℓ} drawn from q

s

t
b

c

e
g

p̃(v) =
1

ℓ

∑
τst∈S

κ(s, t, v)

κ̃(s, t)
· 1 [v ∈ I(τst)]︸ ︷︷ ︸

Our estimator is unbiased

Upperbound on the variance Varq[p̃(v)] ≤ d̂ · p(v)

Internal No
des



PercIS: sample complexity

New data-dependent upper bound on the sample size!

ℓ ≈
(2v̂ + 2

3
εd̂)

ε2
·
(
ln(d̂ρ̂/v̂) + ln(2/δ)

)Given ε, δ ∈ (0, 1)

we obtain a ε-approximation with probability ≥ 1− δ.

Where:

• ρ̂ is a bound to the average path length (observation: ρ̂ ≤ D)

• v̂ is a bound to the max empirical variance (v̂ ≥ maxv Var[p̂(v)])

• d̂ is the max likelihood ratio maxv∈V maxs̸=t
κ(s,t,v)
κ̃(s,t)



PercIS vs UNIF: theoretical results

Define the State Gap as

∆ = max
v∈V

{
max
s̸=v ̸=t

(xs − xt)

}

Then:

• When ∆ ∈ Ω(1), the likelihood ratio d̂ of the Importance Distribution q is O(1)

• There exist instances with ∆ ∈ Ω(1) where d̂ for UNIF is Ω(n).

• There exists instances with ∆ ∈ Ω(1) where we need Ω(n2) random samples for
UNIF, while O(n) random samples for PercIS!



Experimental Analysis

We assign percolation states using different settings:

Random Seeds (RS):O(1) number of nodes v with xv = 1 and the rest is set to 0

Random Seed Spread (RSS): log n random initiators v with xv = 1 and simulation of infection spreading process
from them.

Isolated Component (IC):Only a isolated constant sized component has percolation states > 0

Uniform Sates (UN): Each xv ∼ Uniform([0, 1])



UNIF and ε-approximation

Maximum Error of UNIF on random samples of size O(ln(D/δ)/ε2)

Not an
ε-approximation!!



Maximum (absolute) Error PercIS vs UNIF

Maximum Errors of PercIS (x axes) and UNIF (y axes) on random samples of fixed
sizes ℓ ∈ [103, 106].

PercIS significantly outperforms UNIF on every graph and every setting!

Up to two orders of
magnitude

improvement!!



Target Maximum Error

Sample sizes required to obtain a Maximum Error ≤ ε by UNIF (y axes) and PercIS
(x axes). We set the cap to 108

UNIF fails entirely!!

PercIS always converges with a smaller number of samples



PercIS has a running
time comparable to

UNIF

ImportanceSampler
overhead is negligible!

Running Times (for equal sample size)

Equal sample size
ℓ ∈ [103, 106]



More potential for:
• identifying bridges among users with opposing views/opinions
• flagging content that comes form radicalization pathways

Harmful ContentsOpinion Networks

Jaccard similarity of the top k nodes for
betweenness and percolation.

Experiments for Labeled Networks



Conclusions

• We presented PercIS, a novel approximation algorithm for the PC

• Novel Importance Sampling Distribution

• Tight theoretical guarantees

• PercIS consistently outperform the state-of-the-art



Thank You!

Our paper


