MANTRA: Temporal Betweenness Centrality Approximation through Sampling

Antonio Cruciani

antonio.cruciani@gssi.it

Temporal Networks

Graphs are ubiquitous



Biological

Transport

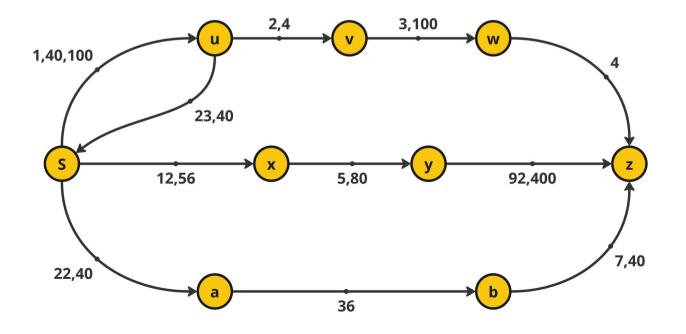
Many of them share a common feature:

they evolve over time

Temporal Networks

A temporal graph is an ordered triple $\mathcal{G} = (V, \mathcal{E}, T)$, where:

- *V* is the set of nodes
- $\mathcal{E} = \{(u, v, t) : u, v \in V \land t \in [T]\}$ is the set of temporal edges
- $T = \{1, 2, \dots, |T|\}$ is a set of time steps

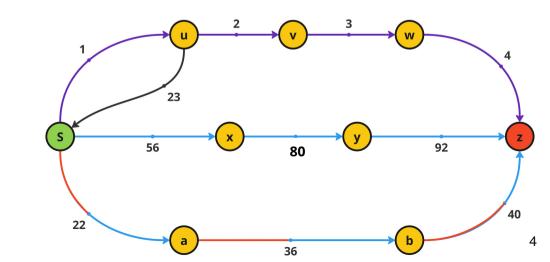


Temporal Betweenness [Buß et al (KDD 2020)]

The temporal betweeness centrality of each node $v \in V$ is defined as

$$b_v^{(\star)} = rac{1}{n(n-1)}\sum_{\substack{s,z\in V\s
eq z
eq v}}rac{\sigma_{s,z}^{(\star)}(v)}{\sigma_{s,z}^{(\star)}}\in [0,1]$$

- $\sigma_{s,z}^{(\star)}(v)$ is the number of (\star) -temporal paths between s and z passing through v
- $\sigma_{s,z}^{(\star)}$ overall number of (\star)-temporal paths between s and z
- (*) can be :
 - Shortest
 - Shortest-Foremost
 - Prefix-Foremost



Temporal Betweenness [Buß et al (KDD 2020)]

The temporal betweeness centrality of each node $v \in V$ is defined as

$$b_v^{(\star)} = rac{1}{n(n-1)}\sum_{\substack{s,z\in V\s
eq z
eq v}}rac{\sigma_{s,z}^{(\star)}(v)}{\sigma_{s,z}^{(\star)}}\in [0,1]$$

- $\sigma_{s,z}^{(\star)}(v)$ is the number of (\star) -temporal paths between s and z passing through v
- $\sigma_{s,z}^{(\star)}$ overall number of (\star)-temporal paths between s and z
- (*) can be :

Path Optimality	Time	Space			
Shortest	$\mathcal{O}\left(n^3 T ^2 ight)$	$\mathcal{O}\left(n T + \mathcal{E} \right)$			
Shortest-Foremost					
Prefix-Foremost	$\mathcal{O}\left(n \mathcal{E} \log \mathcal{E} \right)$	$\mathcal{O}\left(n+ \mathcal{E} \right)$			
Foremost	#P-Hard				
Fastest					

Approximating the Temporal Betweenness

 Methods are based on random sampling to estimate the temporal betweenness centrality with an acceptable accuracy

- Problem definition:
 - given $\varepsilon, \delta \in (0, 1)$ compute (ε, δ) -approximation set $\tilde{\mathcal{B}}^{(\star)} = \{ \tilde{b}_v^{(\star)} : v \in V \}$ such that

$$\mathbf{Pr}\left(\sup_{v \in V} \left| b_v^{(\star)} - ilde{b}_v^{(\star)}
ight| \leq arepsilon
ight) \geq 1 - \delta$$

Approximating the Temporal Betweenness

Works	Temporal Paths	Sample Complexity	Poly. Time	Linear Space	Progressive Sampling	Analysis Techniques
[Santoro and Sarpe 2022]	Shortest	?	Yes	No	No	Empirical Bernstein Bound
This work	All●	Yes	Yes	Yes	Yes	VC-Dim., Rademacher Avg. & Variance Aware bounds

• Temporal paths that can be computed in polynomial time.

How does MANTRA work?

MANTRA in three lines

- MANTRA quickly "observes" the temporal graph.
- MANTRA starts sampling, computing the approximation as it goes.
- At predefined intervals, MANTRA checks **two stopping conditions** to understand, using the sample, whether the current approximation has the desired quality.

Supremum Deviation

Given a set of functions ${\mathcal F}$ from a domain ${\mathcal D}$ and a sample ${\mathcal S}$

$$a_f(\mathcal{S}) = rac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} f(s_i) \; .$$

$$\mu_f = \mathbb{E}[a_f(\mathcal{S})]$$

The Supremum Deviation

$$\mathbf{SD}(\mathcal{F},\mathcal{S}) = \sup_{f\in\mathcal{F}} |a_f(\mathcal{S}) - \mu_f|$$

Goal: To find an Upper bound for $\mathbf{SD}(\mathcal{F}, \mathcal{S})$

Rademacher Averages

c-Monte Carlo Emprical Rademacher Averages (c-MCERA)

$$R^c_r(\mathcal{F},\mathcal{S},oldsymbol{\lambda}) = rac{1}{c}\sum_{j=1}^c \sup_{f\in\mathcal{F}}rac{1}{r}\sum_{s_i\in\mathcal{S}}\lambda_{j,i}f(s_i)
onumber \ oldsymbol{\lambda}\in\{-1,+1\}^{c imes|\mathcal{S}|}, r=|\mathcal{S}|$$

$$\begin{split} & \mathsf{Variance Dependent Bound} \\ & \tilde{R} = R_r^c(\mathcal{F}, \mathcal{S}, \boldsymbol{\lambda}) + \sqrt{\frac{4\mathcal{W}_{\mathcal{F}}(\mathcal{S})\ln(4/\delta)}{cr}} \\ & R = \tilde{R} + \frac{\ln(4/\delta)}{r} + \sqrt{\left(\frac{\ln(4/\delta)}{r}\right)^2 + \frac{2\ln(4/\delta)\tilde{R}}{r}} \\ & \xi = 2R + \sqrt{\frac{2\ln(4/\delta)(\hat{v} + 4R)}{r}} + \frac{\ln(4/\delta)}{3r} \end{split} \end{split} \\ \end{split}$$

 $\mathbf{SD}(\mathcal{F}, \mathcal{S}) \leq \xi$ With Probability at least $1 - \delta$

Back to the Temporal Betweenness

Functions
$$f_v(s,z) = rac{\sigma_{s,z}^{(\star)}(v)}{\sigma_{s,z}^{(\star)}}$$

Domain
$$\mathcal{D} = \{(s,z) \in V imes V : s
eq z\}$$

Sample Mean

$$ilde{b}_v^{(\star)} = rac{1}{|\mathcal{S}|} \sum_{(s,z)\in\mathcal{S}} f_v(s,z)$$

Emp. Wimpy Variance
$$\mathcal{W}_\mathcal{F}(\mathcal{S}) = \sup_{v \in V} rac{1}{|\mathcal{S}|} \sum_{(s,z) \in \mathcal{S}} (f_v(s,z))^2$$

Sample Size for (ε, δ) -approximation

Given $arepsilon,\delta\in(0,1)$

Vapnik–Chervonenkis (VC) Dimension

$$|\mathcal{S}| \; = rac{0.5}{arepsilon^2} \left(\lfloor \log D^{(\star)} - 2
floor + 1 + \ln \left(rac{1}{\delta}
ight)
ight)$$

Maximum number of nodes in the (*)-temporal optimal path

 $\mathbf{SD}(\mathcal{F},\mathcal{S}) \leq arepsilon$ with probability $\geq 1-\delta$

Sample Size for (ε, δ) -approximation

Given $arepsilon,\delta\in(0,1)$

Variance-Aware

$$egin{aligned} |\mathcal{S}| \in \mathcal{O}\left(rac{\hat{v}+arepsilon}{arepsilon^2}\ln\left(rac{
ho^{(\star)}}{\delta \hat{v}}
ight)
ight) \ & \max_{v\in V} \mathbf{Var}(ilde{b}_v^{(\star)}) \leq \hat{v} & rac{1}{n(n-1)}\sum_{s,z\in V}|\mathbf{Int}(tp_{sz})| \end{aligned}$$

$$\mathbf{SD}(\mathcal{F},\mathcal{S}) \leq arepsilon$$
 with probability $\geq 1-\delta$

Fast Approximation of $D^{(\star)}$ and $ho^{(\star)}$

Very high-level idea

Perform $k(\star)$ -Temporal BFS from random nodes

With a sample of $k = \Theta\left(\frac{\ln n}{\varepsilon^2}\right)$ nodes, we can approximate w.h.p.

- $\rho^{(\star)}$ with the absolute error bounded by $\varepsilon \frac{D^{(\star)}}{\zeta}$
- $D^{(\star)}$ with the absolute error bounded by $\frac{\varepsilon}{\zeta}$
- ζ with the absolute error bounded by ε

$$\begin{aligned} & \boldsymbol{\zeta} = \frac{1}{n(n-1)} \sum_{\substack{u,v \in V \\ u \neq v}} \boldsymbol{1}[u \rightsquigarrow v] \in [0,1] \end{aligned}$$

MANTRA

Algorithm 1: MANTRA

```
Data: Temporal graph \mathcal{G}, (*) temporal path optimality, precision
              \varepsilon \in (0, 1), failure probability \delta \in (0, 1), bootstrap iterations k,
              and number of Monte Carlo trials c.
    Result: Absolute \varepsilon-approximation of the (*)-tbc w.p. of at least 1 - \delta.
 1 \mathcal{B}, \mathcal{W} = [0, \ldots, 0] \in \mathbb{R}^n
                                                 // tbc and wimpy variance arrays
 2 S_0 = \{\emptyset\}
 3 i = 0
 4 \xi = 1
 5 \mathcal{D} = \{(s, z) \in V \times V \land s \neq z\}
   // Bootstrap Phase
 6 \rho^{(\star)}, \hat{v} = \text{Run } (\star) - \text{Temporal BFS}(k, \mathcal{D})
                                                                          Bootstrap Phase
 7 \omega = \text{DrawSufficientSampleSize}()
 8 \{s_i\}_{i>1} = \text{SamplingSchedule}(\omega, \hat{v}, \delta)
    // Estimation Phase
 9 while true do
        i = i + 1;
10
        h = s_i - s_{i-1}
11
        \mathcal{X} = \{\emptyset\}
12
        for i = 1 to h do
13
             (s, z) = uniform_random_sample(\mathcal{D})
14
           Compute (\star)-Temporal Paths(s, z)
15
                                                                                                          Estimation Phase
          \mathcal{X} = \mathcal{X} \cup \{(s, z)\}
16
        \mathcal{S}_i = \mathcal{S}_{i-1} \cup \{\mathcal{X}\}
17
        Calculate \hat{\mathcal{B}} and \mathcal{W} from \mathcal{S}_i
18
        \xi = \texttt{ComputeSDBound}(\tilde{\mathcal{B}}, \mathcal{W}, \delta/2^i, s_i, h, c)
19
        if |S_i| \ge \omega or \xi \le \varepsilon then return \{(1/|S_i|) \cdot \mathcal{B}[u] : u \in V\}
\mathbf{20}
```

Experimental Setting

All the algorithms have been implemented in Julia

Parameters:

 $arepsilon \in \{0.1, 0.07, 0.05, 0.01, 0.007.0.005, 0.001\}$ $\delta = 0.1$

c = 25

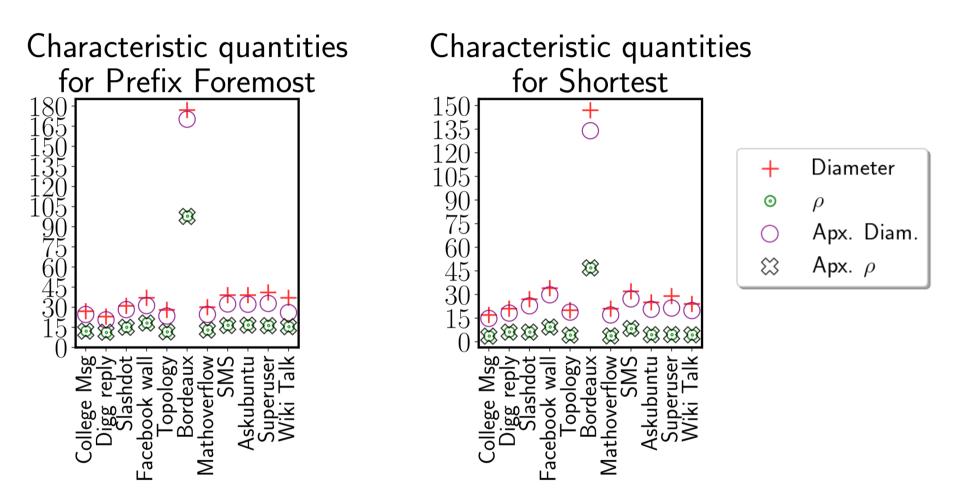
Every algorithm is run 10 times

Machine used: Server with Intel Xeon Gold 6248R (3.0GHz) 32 cores and 1TB RAM

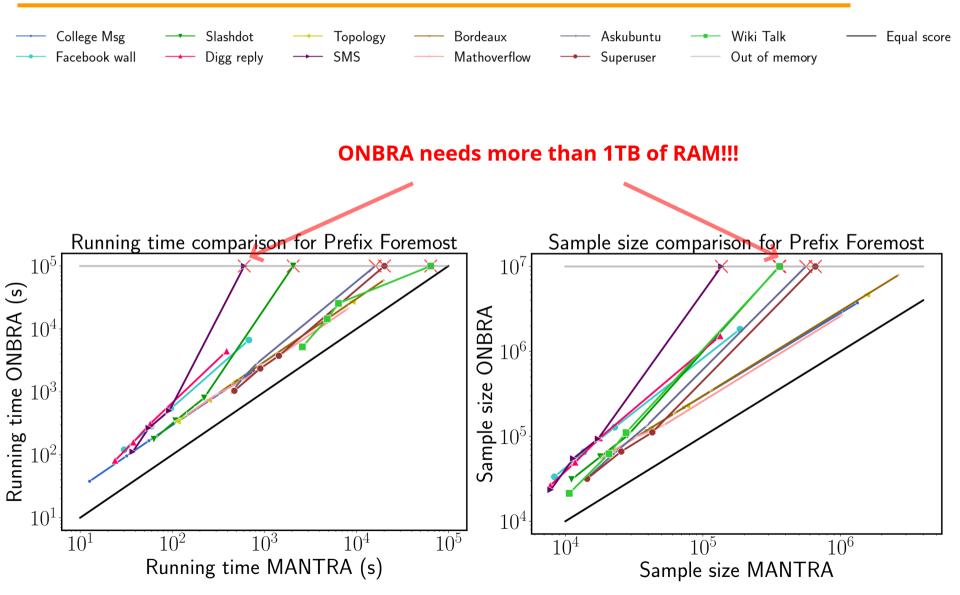
Temporal Networks

Data set	\boldsymbol{n}	$ \mathcal{E} $	T	$\boldsymbol{\zeta}$	$\boldsymbol{b}_{\mathtt{max}}^{(\mathtt{pfm})}$	$\bm{b}_{\mathtt{max}}^{(\mathtt{sh})}$	$\bm{b}_{\mathtt{max}}^{(\mathtt{sfm})}$	Type
College msg	1899	59798	58911	0.5	0.0718	0.0319	0.0365	D
Digg reply	30360	86203	82641	0.02	0.0019	0.0015	0.0016	D
Slashdot	51083	139789	89862	0.07	0.0128	0.0074	0.0085	D
Facebook Wall	35817	198028	194904	0.04	0.0034	0.0024	0.0028	D
Topology	16564	198038	32823	0.53	0.0921	0.0654	0.0681	U
Bordeaux	3435	236075	60582	0.84	0.1210	0.1383	0.1269	D
Mathoverflow	24759	390414	389952	0.33	0.0522	0.0282	0.0287	D
SMS	44090	544607	467838	0.008	0.0019	0.0010	0.0012	D
Askubuntu	157222	726639	724715	0.169	0.0214	0.0156	0.0154	D
Super user	192409	1108716	1105102	0.21	0.0261	0.0165	0.0182	D
Wiki Talk	1094018	6092445	5799206	0.069	0.0089	0.0155	0.0153	D

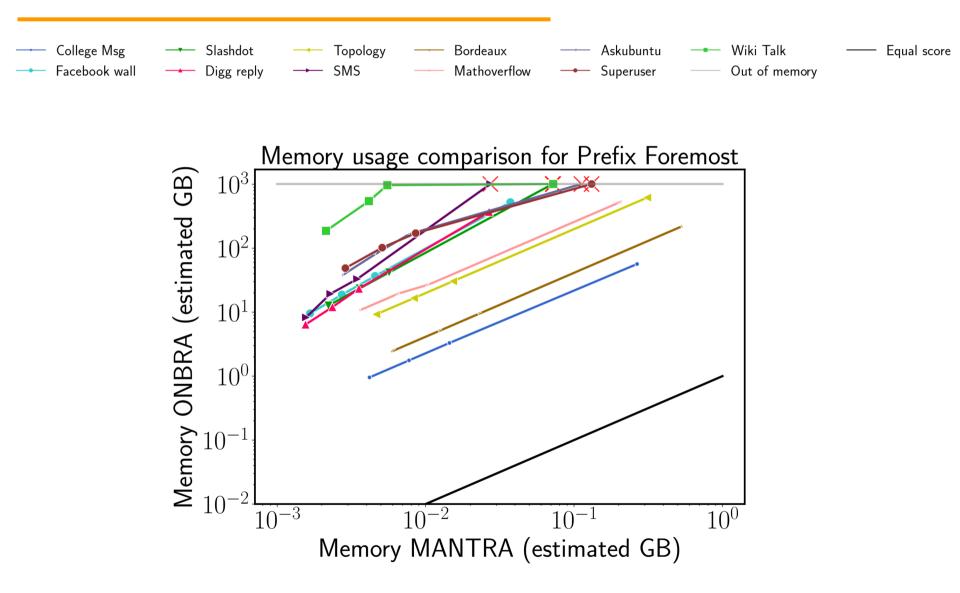
Temporal Networks: properties



Speed an Sample size MANTRA vs ONBRA



Space MANTRA vs ONBRA



Conclusions

- Introduced MANTRA, a novel sampling-based approximation algorithm for the temporal betweenness centrality
- Provided a sample-complexity analysis for the temporal betweenness estimation problem
- Provided a sampling-based approximation algorithm for temporal distance-based metrics in temporal graphs
- Theoretically and experimentally showed the advantage of using our framework over the state of the art

Future directions

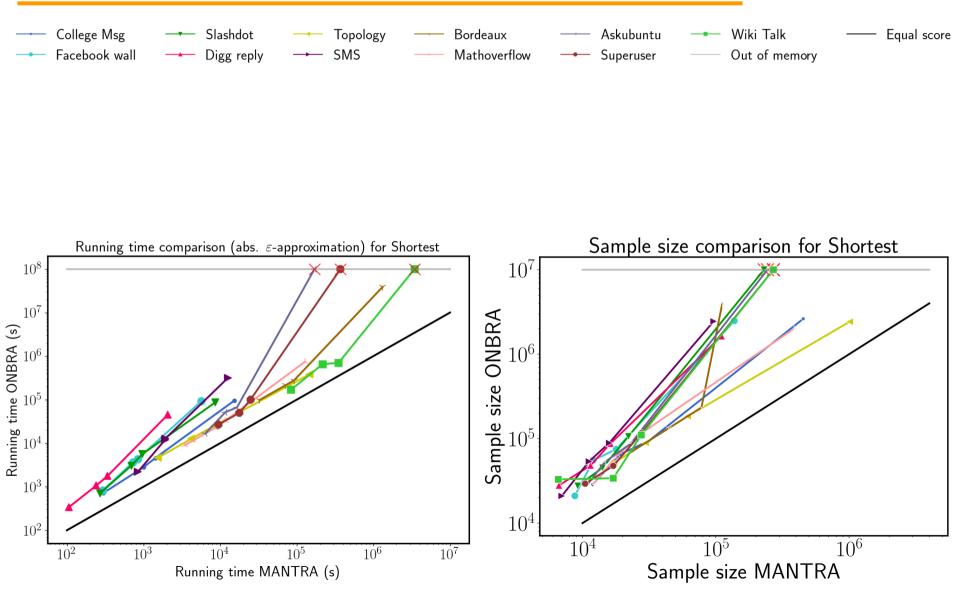
• Use the novel temporal graph traversal proposed by Brunelli et al. in KDD 2024 to speed-up MANTRA

• Extend MANTRA to the computation of set centralities as for the static case [Pellegrina KDD 2023]

• Use MANTRA to find communities in temporal graphs

Thank You!

MANTRA vs ONBRA For shortest TBC



MANTRA vs ONBRA For shortest TBC

