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Temporal Networks

Graphs are ubiquitous

they evolve over time

 Many of them share a common feature:

Social Biological Transport

.... ....
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Temporal Networks

A temporal graph is an ordered triple , where:G = (V , E ,T )

 is the set of nodes
 is the set of temporal edges

 is a set of time steps

V

E = {(u, v, t) : u, v ∈ V ∧ t ∈ [T ]}
T = {1, 2,… , ∣T ∣}
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Temporal Betweenness [Bu  et al (KDD 2020)]ß

The temporal betweeness centrality of each node  is
defined as

 is the number of -temporal paths between  and 
passing through 

 overall number of )-temporal paths between  and 
 can be :
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Approximating the Temporal Betweenness

Pr b − ≤ ε ≥(
v∈V
sup v

(⋆) b
~
v
(⋆) ) 1 − δ

Methods are based on random sampling to estimate the
temporal betweenness centrality with an acceptable
accuracy

Problem definition:
given  compute -approximation set 

 such that
ε, δ ∈ (0, 1) (ε, δ)

=B
~(⋆) { :b

~
v
(⋆)

v ∈ V }
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Approximating the Temporal Betweenness
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How does MANTRA work?

MANTRA quickly  the temporal graph.

MANTRA starts sampling, computing the approximation as it goes.

At predefined intervals, MANTRA checks two stopping conditions to understand,

using the sample, whether the current approximation has the desired quality.

“observes”

MANTRA in three lines
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Supremum Deviation

Given a set of functions  from a domain  and a sample F D S

SD(F ,S) = a (S) − μ
f∈F

sup ∣ f f ∣

a (S) =f f(s )
∣S∣
1

i=1

∑
∣S∣

i μ =f E[a (S)]f

The Supremum Deviation

Goal: SD(F ,S)To find an Upper bound for
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Rademacher Averages

c-Monte Carlo Emprical Rademacher Averages (c-MCERA)

λ ∈ {−1,+1} , r =c×∣S∣ ∣S∣

R (F ,S,λ) =r
c λ f(s )

c

1

j=1

∑
c

f∈F

sup
r

1

s ∈Si

∑ j,i i

With Probability at least 1 − δ

W (S) =F (f(s ))
f∈F

sup
r

1

s ∈Si

∑ i
2

Empirical
Wimpy Variance

R = +R
~

+
r

ln(4/δ) +(
r

ln(4/δ))2
r

2 ln(4/δ)R
~

ξ = 2R+ +
r

2 ln(4/δ) +4R(v̂ )
3r

ln(4/δ)

SD(F ,S) ≤ ξ

Variance Dependent Bound

=R
~

R (F ,S,λ) +r
c

cr

4W (S) ln(4/δ)F

10



Back to the Temporal Betweenness

 f (s, z) =v
σs,z
(⋆)

σ (v)s,z
(⋆)

 D = {(s, z) ∈ V × V : s = z}

=b
~
v
(⋆) f (s, z)

∣S∣
1

(s,z)∈S

∑ v

Functions

Domain

Sample Mean

W (S) =F (f (s, z))
v∈V
sup

∣S∣
1

(s,z)∈S

∑ v
2Emp. Wimpy Variance
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Sample Size for -approximation(ε, δ)

Given ε, δ ∈ (0, 1)

Maximum number of nodes in the 
-temporal optimal path(⋆)

Vapnik–Chervonenkis (VC) Dimension

S   =∣ ∣ ⌊logD − 2⌋ + 1 + ln
ε2
0.5 ( (⋆) (

δ

1))

 with probability SD(F ,S) ≤ ε ≥ 1 − δ
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Given ε, δ ∈ (0, 1)

S ∈∣ ∣ O ln(
ε2
+ εv̂ (

δv̂

ρ(⋆) ))

max Var( ) ≤v∈V b
~
v
(⋆)

v̂ Int(tp )
n(n− 1)

1

s,z∈V

∑ ∣ sz ∣

Variance-Aware

 with probability SD(F ,S) ≤ ε ≥ 1 − δ

Sample Size for -approximation(ε, δ)
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Fast Approximation of  and D(⋆) ρ(⋆)

Very high-level idea

With  a sample of  nodes, we can approximate w.h.p.

 with the absolute error bounded by 
 with the absolute error bounded by 

   with the absolute error bounded by 

k = Θ (
ε2
ln n)

ρ(⋆) ε
ζ

D(⋆)

D(⋆)
ζ
ε

ζ ε

Perform  -Temporal BFS from random nodesk (⋆)

Temporal Connectivity Rate

ζ = 1[u⇝
n(n− 1)

1

u,v∈V
u=v

∑ v] ∈ [0, 1]
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MANTRA

Bootstrap Phase

Estimation Phase
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Experimental Setting

All the algorithms have been implemented in Julia

Every algorithm is run 10 times

δ = 0.1

ε ∈ {0.1, 0.07, 0.05, 0.01, 0.007.0.005, 0.001}

Parameters:

c = 25

Machine used:  Server with Intel Xeon Gold 6248R (3.0GHz)
32 cores and 1TB RAM
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Temporal Networks
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Temporal Networks: properties
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ONBRA needs more than 1TB of RAM!!!

Speed an Sample size MANTRA vs ONBRA
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Space MANTRA vs ONBRA
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Conclusions

Introduced MANTRA, a novel sampling-based
approximation algorithm for the temporal betweenness
centrality

Provided a sample-complexity analysis for the temporal
betweenness estimation problem

Provided a sampling-based approximation algorithm for
temporal distance-based metrics in temporal graphs

Theoretically and experimentally showed the advantage of
using our framework over the state of the art
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Future directions

Use the novel temporal graph traversal proposed by
Brunelli et al. in KDD 2024 to speed-up MANTRA

Extend MANTRA to the computation of set centralities as
for the static case [Pellegrina KDD 2023]

Use MANTRA to find communities in temporal graphs
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Thank You!
MANTRA
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MANTRA vs ONBRA For shortest TBC
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MANTRA vs ONBRA For shortest TBC

25


