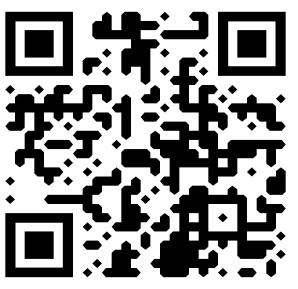


Fast Percolation Centrality Approximation with Importance Sampling



Antonio Cruciani*

Leonardo Pellegrina[†]

Our Paper

Percolation Centrality is a useful measure to quantify the importance of the vertices in a contagious process or to diffuse information. However, it is impractical to compute the exact percolation centrality on modern-sized networks.

Abstract

- There are key limitations of state-of-the-art sampling-based approximation algorithms
- We show that, in most cases, the SOTA cannot achieve accurate solutions efficiently
- We propose **PercIS** a sampling algorithm based on Importance Sampling
- PercIS severely overperforms the SOTA, both, theoretically and experimentally.

Problem Statement

Input: A graph G = (V, E) with n = |V| and m = |E|, and percolation states $x = (x_1, x_2, \dots, x_n) \in [0, 1]^n$

Problem: Compute the *exact* **percolation centrality** for each node *v*,

$$p(v) = \sum_{s \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}} \cdot \kappa(s, t, v) \in [0, 1]$$

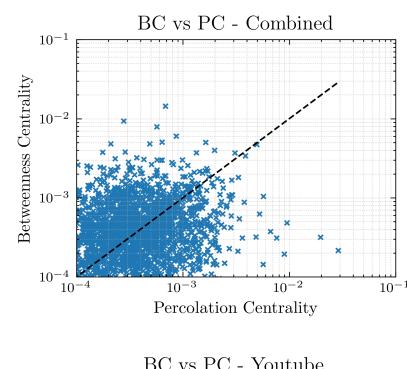
- $\sigma_{st}(v)$ number of shortest paths between s and t passing through v
- σ_{st} overall number of shortest paths between s and t
- $\bullet \kappa(s,t,v) = \frac{R(x_s x_t)}{\sum_{u \neq v \neq w} R(x_u x_w)}$
- $\bullet R(x) = \max(0, x)$

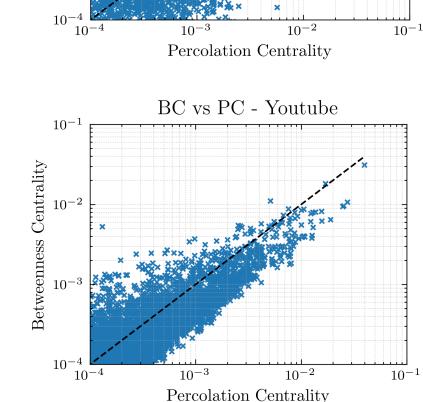
Challenge: Exact computation requires $O(n \cdot m)$ time!

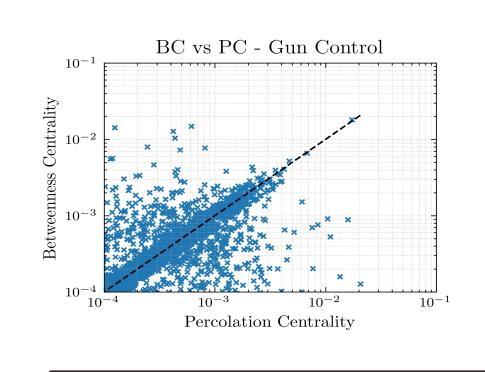
Goal: Compute an ε -approximation of the percolation centrality:

$$|p(v) - \tilde{p}(v)| \le \varepsilon, \quad \forall v \in V$$

Use case: information/contagion propagation in networks







	Jaccard Similarity Top-l				
Graph	10	50	100		
Guns	0.053	0.087	0.117		
Combined	0.0	0.031	0.015		
Youtube	0.429	0.369	0.504		

Jaccard similarity between betweenness and percolation centrality rankings.

State of the art

Lima et al. [1,2] generalised the techniques for the Betweenness centrality to the Percolation centrality.

High level idea:

- Randomly sample shortest paths of the graph
- Use the (weighted) fraction of the paths that traverse v as an estimate of its percolation centrality.

Cons: Technical issues that prevent these methods to be useful in practical applications.

No truly effective algorithm exists to approximate the percolation centrality.

Our Approach: Importance Sampling

Distribution: We define $\tilde{\kappa}: V \times V \rightarrow [0, 1]$

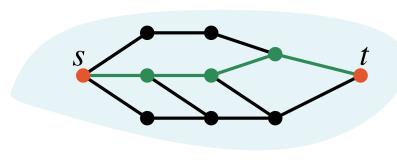
$$\tilde{\kappa}(s,t) = \frac{R(x_s - x_t)}{\sum_{u \neq w} R(x_u - x_w)}$$

For any shortest path τ_{st} , we consider the *importance distribution*:

$$q(\tau_{st}) = \frac{\tilde{\kappa}(s,t)}{\sigma_{st}}$$

Sampling from q

- (1) Sample two nodes s and t with probability $\tilde{\kappa}(s, t)$;
- (2) Compute the set of shortest paths Γ_{st} from s to t;
- (3) Choose one shortest path uniformly at random from Γ_{st} .



The estimator and its properties

Let $S = \{\tau^1, \tau^2, \dots, \tau^\ell\}$ be a sample of ℓ i.i.d. shortest paths from q.

$$\tilde{p}(v) = \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{\kappa(s, t, v)}{\tilde{\kappa}(s, t)} \mathbb{1} \left[v \in \mathcal{I}(\tau_{st}^{i}) \right]$$

- The estimator is *unbiased*.
- The variance is bounded by $\operatorname{Var}_q[\tilde{p}(v)] \leq \hat{d}p(v)$

Where \hat{d} is the *likelihood ratio*

$$\hat{d} = \max_{v \in V} \left\{ \max_{\substack{s,t \in V, \\ \tilde{\kappa}(s,t) > 0}} \frac{\kappa(s,t,v)}{\tilde{\kappa}(s,t)} \right\}$$

PercIS

Algorithm 1: PERCIS

Input: Graph G = (V, E), percolation states $x_1, x_2, \ldots, x_n, \ell_1 \geq 2, \varepsilon, \delta \in (0, 1).$ **Output:** ε -approximation of $\{p(v), v \in V\}$ with probability $\geq 1 - \delta$

1 $D \leftarrow VERTEXDIAMUB(G)$;

2 $S \leftarrow \text{IMPORTANCESAMPLER}(G, \{x_v\}, \ell_1);$

3 forall $v \in V$ do $\tilde{p}(v) \leftarrow \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{\kappa(s,t,v)}{\tilde{\kappa}(s,t)} \mathbb{1}\left[v \in I(\tau_{st}^i)\right]$

4 $\hat{\rho} \leftarrow \tilde{\rho}(\mathcal{S}) + \sqrt{\frac{2\Lambda(\mathcal{S})\log(8/\delta)}{\ell_1}} + \frac{7D\log(8/\delta)}{3(\ell_1-1)};$

5 $\hat{v} \leftarrow \hat{d}^2 \max_{v \in V} \left\{ \tilde{p}(v) + \sqrt{\frac{2\tilde{p}(v)\log(4/\delta)}{\ell_1}} + \frac{\log(4/\delta)}{3\ell_1} \right\};$

6 $\hat{x} \leftarrow \hat{d}/2 - \sqrt{\hat{d}^2/4 - \min\{\hat{d}^2/4, \hat{v}\}};$

 $\int \hat{d}^2 \ln \left(\frac{4\hat{d}\hat{\rho}}{x\delta} \right)$

7 $\ell \leftarrow \sup_{x \in (0,\hat{x}]} \left\{ \frac{\frac{x \cdot \delta}{g(x)h\left(\frac{\varepsilon \hat{d}}{g(x)}\right)}}{\frac{\varepsilon \hat{d}}{g(x)}} \right\};$ 8 $\mathcal{S} \leftarrow \text{IMPORTANCESAMPLER}(G, \{x_v\}, \ell);$

9 forall $v \in V$ do $\tilde{p}(v) \leftarrow \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{\kappa(s,t,v)}{\tilde{\kappa}(s,t)} \mathbb{1}\left[v \in I(\tau_{st}^i)\right]$

10 return $\{\tilde{p}(v), v \in V\}$

Theoretical guarantees of PercIS

ImportanceSampler draws ℓ samples from q in time $O(n + \ell(\log n + T_{BBFS}))$ and space O(n + m).

Define \hat{v} and $\hat{\rho}$ such that

$$\max_{v \in V} \operatorname{Var}_q[\tilde{p}(v)] \le \hat{v}, \qquad \sum_{v \in V} p(v) \le \hat{d}\hat{\rho}$$

avg. path length!

Given a sample $S = \{\tau^1, \dots, \tau^\ell\}$ of ℓ shortest paths sampled from q, and $\delta, \varepsilon \in (0,1)$ then

$$\ell \approx \frac{\left(2\hat{v} + \frac{2}{3}\varepsilon\hat{d}\right)}{\varepsilon^2} \left(\ln(\hat{d}\hat{\rho}/\hat{v}) + \ln(2/\delta)\right)$$

gives an ε -approximation of the percolation centrality with probability $\geq 1 - \delta$

PercIS vs UNIF

State Gap:

$$\Delta = \min_{v \in V} \max_{s \neq v \neq t} (x_s - x_t)$$

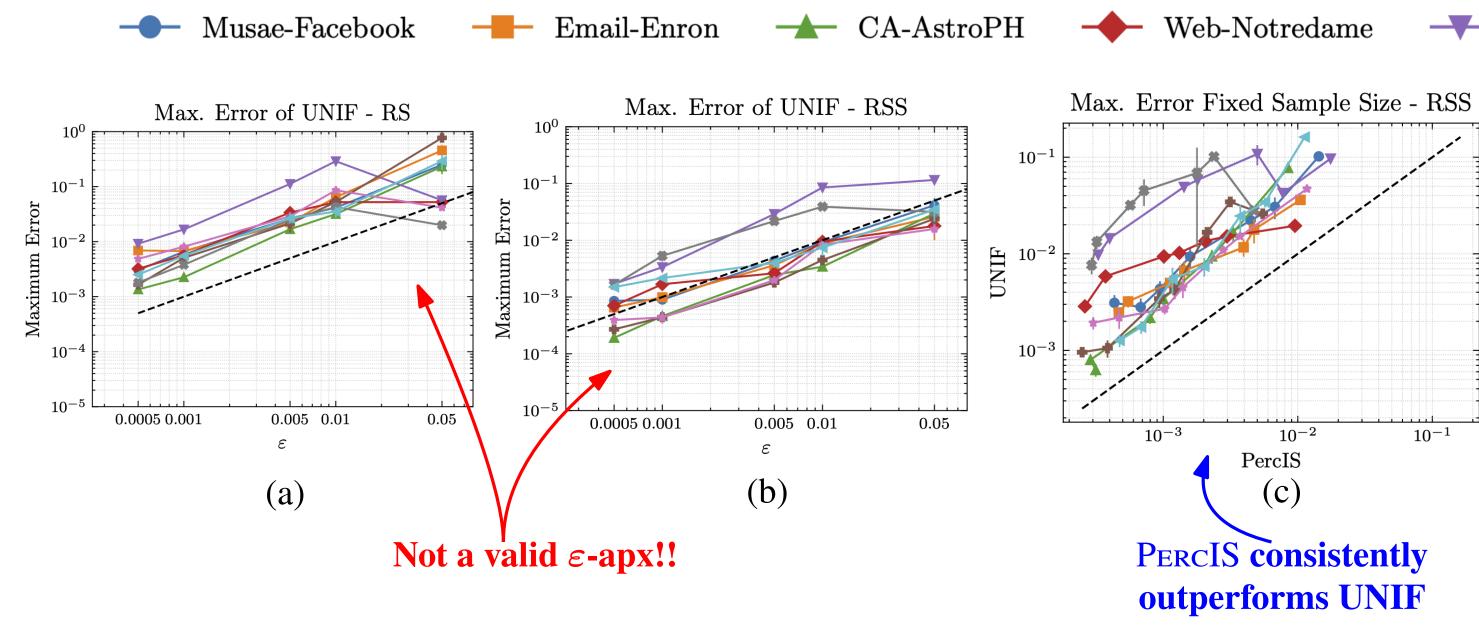
- When $\Delta \in \Omega(1)$, the likelihood ratio \hat{d} of the IS distribution q is $\hat{d} \in O(1)$
- There exists instances with $\Delta \in \Omega(1)$ where the likelihood ratio of the uniform distribution is $\Omega(n)$
- There exists instances with $\Delta \in \Omega(1)$ where at least $\Omega(n^2)$ random samples are needed by UNIF, while O(n) random samples are sufficient for PercIS

For all the considered real world networks, it holds $\Delta = 1$

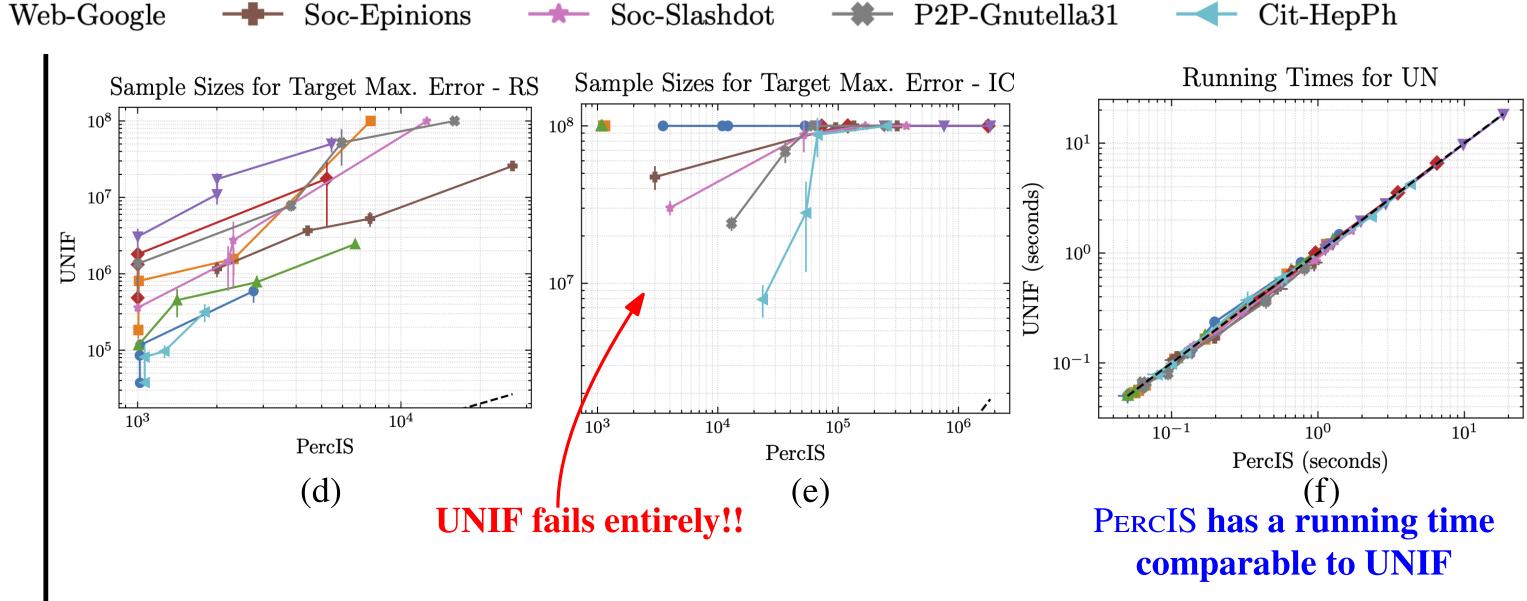
Networks and Experiments

Graph	V	$ oldsymbol{E} $	D	ρ	Type
P2P-Gnutella31	62586	147892	31	7.199	D
Cit-HepPh	34546	421534	49	5.901	D
Soc-Epinions	75879	508837	16	2.755	D
Soc-Slashdot	82168	870161	13	2.135	D
Web-Notredame	325729	1469679	93	9.265	D
Web-Google	875713	5105039	51	9.713	D
Musae-Facebook	22470	170823	15	2.974	U
Email-Enron	36692	183831	13	2.025	U
CA-AstroPH	18771	198050	14	2.194	U

- Random Seeds (RS): small number of nodes with $x_v = 1$ and the rest to 0
- Random Seeds Spread (RSS): Simulation of infection spreading from random seeds
- Isolated Component (IC): small isolated component with some nodes $x_v = 1$ and the rest to
- Uniform States (UN): $x_v \sim \text{Uniform}([0, 1])$



(a-b) Maximum Error of UNIF on random samples of size $O(\log(D/\delta)/\varepsilon^2)$ (bound in [1]). (c) Maximum Errors of PERCIS (x axes) and UNIF (y axes) on random samples of fixed sizes $\ell \in [10^3, 10^6]$



(d-e) Sample sizes required to obtain a Maximum Error $\leq \varepsilon$ PercIS (x-axes) and UNIF (y-axes). (f) Comparison between the running times (in seconds) of UNIF and PERCIS on fixed sample sizes $\ell \in [10^3, 10^6]$.