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Percolation Centrality is a useful measure to quantify the
importance of the vertices in a contagious process or to diffuse
information. However, it is impractical to compute the exact
percolation centrality on modern-sized networks.

Problem Statement
Input: A graph G = (V,E) withn = |V| and m =
states * = (x1,Xx2,...,X,) € [0, 1]"

|E|, and percolation

Problem: Compute the exact percolation centrality for each node v,

p(v) = Z 75 (V) - k(s,t,v) € [0, 1]

S#t U st

e 0,;(v) number of shortest paths between s and ¢ passing through v

e 0, overall number of shortest paths between s and ¢
o k(s,1,V) = o)

> Zuivin(xu_xW)

e R(x) = max(0, x)

Challenge: Exact computation requires O(n - m) time!

Goal: Compute an g-approximation of the percolation centrality:

lp(v) -p(vV)[ <e, VveV

Our Approach: Importance Sampling
Distribution: We definek : VXV — [0, 1]

R(xs — x;)

E(S, t) B Zu;&w R(xu — xw)

For any shortest path 7, we consider the importance distribution :

g(r) = S0

O st

Sampling from ¢
(1) Sample two nodes s and ¢ with probability (s, t);

(2) Compute the set of shortest paths I'y; from s to ¢;
(3) Choose one shortest path uniformly at random from I';.

\) 5
Theoretical guarantees of PerclS

IMPORTANCESAMPLER draws { samples from g in time
O(n+ ¢(logn + Tgprs)) and space O(n + m).

avg. path length!

—

, 7'} of € shortest paths sampled from ¢, and

Define ¥ and p such that

2. pv) <dp

vevV

V. <
I})lea‘gc ar,[p(v)] <9,

Given a sample S = {7/,
d,& € (0,1) then

[~ (29 ' %Sj) (1n(ciﬁ /D) + 1n(2/6))

82

gives an g-approximation of the percolation centrality with probability
>1-90
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Abstract

* There are key limitations of state-of-the-art
sampling-based approximation algorithms

* We show that, in most cases, the SOTA cannot achieve
accurate solutions efficiently

Use case: information/contagion
propagation in networks
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Jaccard Similarity Top-K
Graph 10 50 100
Guns 0.053 0.087 0.117
Combined 0.0 0.031 0.015
Youtube 0.429  0.369 0.504
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Jaccard similarity between
betweenness and percolation
centrality rankings.
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The estimator and its properties

LetS = {Tl, T2 ..., Tf} be a sample of £ 1.1.d. shortest paths from gq.

VEZ( t)]

Z K(s,t, v)
T Y K(s,1)
e The estimator 1s unbiased.

e The variance is bounded by Var,[p(v)] < dp(v)

Where d is the likelihood ratio

\

K(s,t,V)
max

s,teV,  K(s,1)
\E(s,t)>0

)

PerclS vs UNIF

A = min max (x; — x;)

State Gap: vV sEvEt

e When A € Q(1), the likelihood ratio d of the IS distribution ¢ is
d e O0(1)

e There exists instances with A € Q(1) where the likelihood ratio of the
uniform distribution is Q(n)

e There exists instances with A € Q(1) where at least Q(n?) random
samples are needed by UNIF, while O(n) random samples are sufficient
for PERCIS

For all the considered real world networks, it holds A = 1
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Our Paper

e We propose PERCIS a sampling algorithm based on
Importance Sampling

* PERCIS severely overperforms the SOTA, both, theoretically
and experimentally.

State of the art

Lima et al. [1,2] generalised the techniques for

the Betweenness centrality to the Percolation

centrality.

High level idea:

¢ Randomly sample shortest paths of the graph

e Use the (weighted) fraction of the paths that
traverse v as an estimate of its percolation
centrality.

Cons: Technical issues that prevent these
methods to be useful 1n practical applications.

No truly effective algorithm exists to
approximate the percolation centrality.

PerclS

Algorithm 1: PERCIS

Input: Graph G = (V, E), percolation states
L1, L2y« 3Tn, gl 2 2:- 5:5 € (07 ]-)
Output: c-approximation of {p(v),v € V} with
probability > 1 — ¢
1 D < VERTEXDIAMUB(G);
2 § <+ IMPORTANCESAMPLER(G, {z},41);

3 forall v € V do 5(v)  § i, "1 [v € 1(73)
4 p p(S) + \/ 2A(S) (8/6) 4 TDIoE(8/:).

)+ \/ 25(0) log(4/9) y log(4/%) };

5 0« d? maxvev{

6 & d/2—\/d2/4 - min{d2/4,5};

Fuh) )
7 £ ¢ su . ;
pa:E(O,:B]{ g(z )h(g($))
8 S« IMPORTANCESAMPLER(G {z},);

9 forall v € V do p(v) EZZ lﬂéftt")’)]l[vef( )]
10 return {p(v),v € V}

Networks and Experiments

Graph V| | E| D P

P2P-Gnutella31 62586 147892 31 7.199
Cit-HepPh 34546 421534 49 5.901
Soc-Epinions 75879 508837 16  2.755
Soc-Slashdot 82168 870161 13 2.135
Web-Notredame 325729 1469679 93  9.265
Web-Google 875713 5105039 51 9.713
Musae-Facebook 22470 170823 15 2974
Email-Enron 36692 183831 13 2.025
CA-AstroPH 18771 198050 14 2.194
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e Random Seeds (RS): small number of nodes
with x, = 1 and the rest to O

e Random Seeds Spread (RSS): Simulation of
infection spreading from random seeds

¢ Isolated Component (IC): small isolated
component with some nodes x,, = 1 and the rest to
0

¢ Uniform States (UN): x, ~ Uniform( [0, 1])
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UNIF fails entirely!! PERCIS has a running time

PErCIS consistently comparable to UNIF

outperforms UNIF

(a-b) Maximum Error of UNIF on random samples of size O(log(D/§) /&) (bound in [1]). (c)
Maximum Errors of PERCIS (x axes) and UNIF (y axes) on random samples of fixed sizes
¢ e [10°,10°]

Not a valid -apx!!

(d-e) Sample sizes required to obtain a Maximum Error < & PerclS (x-axes) and UNIF (y-axes).

(f) Comparison between the running times (in seconds) of UNIF and PERCIS on fixed sample
sizes £ € [103,10°].
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