Introduction

= Real-world networks are dynamic = Nodes continuously join and
leave the network (churn)

" Fast evolution = The churn can be arbitrarily bad

Figure 1. Example of a dynamic graph in which nodes are replaced at each round by an
adversary.

= What about maintaining a dynamic distributed data structure?

Challenges
= Classic distributed protocols do = We need to be very fast in
not work! updating the data structure!
- Powerful (oblivous) adversary = We must spend as "little effort as
, , possible” to maintain the data
= High churn rate (almost linear)

structure!

Some related work

Our Idea WAVE: An O(logn) merge procedure

Four networks approach: (1) A churn resilient overlay network S; (2) A live
queryable network L; (3) A buffer network B of newly added elements; and
(4) a clean network C with all the updates.

C PR B +00

L iUpdate)
We propose an O(log n) rounds continuous maintenance cycle that preserves Figure 5. lllustration of our novel merge algorithm that merges two skip list of n elements in
the data distributed data structure despite high adversarial churn. O(log n) rounds with high probability.

Dealing with removed nodes Using the Clean network as the new Live network

= The Dynamic Network with churn model (survey by Augustine et al. [1]).
= Skip List-like data structures [4, 3, 2].

Problem Definition

We want to maintain a distributed skip list despite an adversarial churn of
O(n/logn) nodes per rounds where n is the stable network’s size. We must:

= Build and maintain a data structure of all the items/nodes in the network
= Ensure that the data structure can be queried at any time
= Update the data structure as fast a possible

= Be dynamic resource competitive, I.e., effort paid to maintain the data
structure must be proportional to the overall experienced churn.

E St Centre for Cybersecurity, Trust and Reliability
U ar Indian Institute of Technology Madras

‘ Maintenance Cycle c Maintenance Cycle c+ 1

@ .\
: ._/ \, Clean Network
:.:.1{.::.:./\\.:,:.17.: e e

v
Leaves the network-~ Committee covers for the orange node Virtually representing the red node AN o
\

Figure 2. Nodes leave the network are temporarily replaced in O(1) rounds by committees Live Network %%%
in the overlay network S. % % % “a % % %
Deleting virtual nodes in O(log n) rounds | | T
. . . 5 .
. k ~ ~ { ~ Our main result
[I Te 1 & & I T n TS I . 1 5w I T n In this work:
@) (b) . . - . o
= O(logn) round algorithm that builds and maintains a distributed skip list
— . ’ ’ despite an O(n/logn) churn rate per round.
. ‘ ¢ ’ = Maintenance protocol the guarantees O(logn) rounds
./:I T] k ! insertion/deletion (of a batch of nodes) and query time on the skip list.
— o 4 oo o) o *« o o) . .
S R = O(polylog(n)) bits messages and each node sends/receives
) d) O(polylog(n)) messages per round.

= \Workload proportional to the churn.

Figure 3. lllustration of our novel distributed and parallel skip list partition algorithm that = The skip list is maintained for at least poly(n) rounds w.h.p

removes a batch of nodes from a skip list in O(logn) rounds with high probability.

Qur algorithm: (1) can be used to maintain any skip list-like data structure

_ _ (e.g. skip graphs and skip™ [3, 2]); (2) works with any number of data struc-
Creating the Buffer Network in O(log n) rounds ture’s keys per node; and, (3) can be adapted to maintain any distributed

pointer-based data structure (e.g. graphs).

*
- , , Skip graphs.
Q O(log n) 1] J. Augushn.e, G. Pandurangan, [2] R Jacol?, A. W. Richa, | ACM Trans. Algorithms, 2007.
- 5o 3 and P. Robinson. C. Scheideler, S. Schmid, and
AKS H. Taubig. 4] P. William.
Buffer nodes Sorting Network Buffer Network Distributed algorithmic Skip™: A self-stabilizing skip Concurrent maintenance of
foundations of dynamic oraph skip lists.
Figure 4. We build a temporary churn resilient sorting network on top of & and we build networks. J. ACM. 2014. In Technical Report, 1998.

the Buffer network using the nodes that have joined the network until this time. SIGACT News. 2016, 3] A James and S. Gauri

https://antonio-cruciani.github.io/
mailto:antonio.cruciani@gssi.it

