
Highly Dynamic and Fully Distributed Data Structures
John Augustine 1 Antonio Cruciani 2 Iqra Altaf Gillani3

1IIT Madras, Chennai, India, 2Gran Sasso Science Institute, L’Aquila, Italy, 3National Institute of Technology Srinagar, Srinagar, India

Check out our paper!

Introduction

Real-world networks are dynamic

Fast evolution

Nodes continuously join and

leave the network (churn)

The churn can be arbitrarily bad

t t + 1

time

Figure 1. Example of a dynamic graph in which nodes are replaced at each round by an

adversary.

What about maintaining a dynamic distributed data structure?

Challenges

Classic distributed protocols do

not work!

Powerful (oblivous) adversary

High churn rate (almost linear)

We need to be very fast in

updating the data structure!

We must spend as “little effort as

possible” to maintain the data

structure!

Some relatedwork

The Dynamic Network with churn model (survey by Augustine et al. [1]).

Skip List-like data structures [4, 3, 2].

Problem Definition

We want to maintain a distributed skip list despite an adversarial churn of

O(n/ log n) nodes per rounds where n is the stable network’s size. We must:

Build and maintain a data structure of all the items/nodes in the network

Ensure that the data structure can be queried at any time

Update the data structure as fast a possible

Be dynamic resource competitive, i.e., effort paid to maintain the data

structure must be proportional to the overall experienced churn.

Our Idea

Four networks approach: (1) A churn resilient overlay network S; (2) A live

queryable network L; (3) A buffer network B of newly added elements; and

(4) a clean network C with all the updates.

C

L

B

Creation

Merge

Update

D
elete

S

Committee

0 1 0

0

1

2

3

We propose an O(log n) rounds continuous maintenance cycle that preserves

the data distributed data structure despite high adversarial churn.

Dealing with removed nodes

Leaves the network Committee covers for the orange node Virtually representing the red node

Figure 2. Nodes leave the network are temporarily replaced in O(1) rounds by committees

in the overlay network S .

Deleting virtual nodes in O(log n) rounds

a b c d e f g h ℓls rsi

(a)

a b c d e f g h ℓls rsi

(b)

a b c d e f g h ℓls rsi

(c)

als c d e f g h ℓ rs

(d)

Figure 3. Illustration of our novel distributed and parallel skip list partition algorithm that

removes a batch of nodes from a skip list in O(log n) rounds with high probability.

Creating the Buffer Network in O(log n) rounds

Buffer nodes Sorting Network Buffer Network

AKS

O(log n)

Figure 4. We build a temporary churn resilient sorting network on top of S and we build

the Buffer network using the nodes that have joined the network until this time.

WAVE: An O(log n) merge procedure

−∞ +∞
5 13 27 45 50

−∞ +∞
1 23 25 55 98

135 4527 50

+∞
551

−∞
2523 98 rsls

waveRound 1

Round 2

Round 3

Figure 5. Illustration of our novel merge algorithm that merges two skip list of n elements in

O(log n) rounds with high probability.

Using the Clean network as the new Live network

Clean Network

Live Network

Maintenance Cycle c Maintenance Cycle c + 1

Time

O
(1)

rounds

Ourmain result

In this work:

O(log n) round algorithm that builds and maintains a distributed skip list

despite an O(n/ log n) churn rate per round.

Maintenance protocol the guarantees O(log n) rounds
insertion/deletion (of a batch of nodes) and query time on the skip list.

O(polylog(n)) bits messages and each node sends/receives

O(polylog(n)) messages per round.

Workload proportional to the churn.

The skip list is maintained for at least poly(n) rounds w.h.p.

Our algorithm: (1) can be used to maintain any skip list-like data structure

(e.g. skip graphs and skip+ [3, 2]); (2) works with any number of data struc-

ture’s keys per node; and, (3) can be adapted to maintain any distributed

pointer-based data structure (e.g. graphs).

[1] J. Augustine, G. Pandurangan,

and P. Robinson.

Distributed algorithmic

foundations of dynamic

networks.

SIGACT News, 2016.

[2] R. Jacob, A. W. Richa,

C. Scheideler, S. Schmid, and

H. Täubig.

Skip+: A self-stabilizing skip

graph.

J. ACM, 2014.

[3] A. James and S. Gauri.

Skip graphs.

ACM Trans. Algorithms, 2007.

[4] P. William.

Concurrent maintenance of

skip lists.

In Technical Report, 1998.

https://antonio-cruciani.github.io/ CYSTAR antonio.cruciani@gssi.it

https://antonio-cruciani.github.io/
mailto:antonio.cruciani@gssi.it

