Introduction

= Real-world networks are dynamic = Nodes continuously join and
leave the network (churn)

" Fast evolution = The churn can be arbitrarily bad

Figure 1. Example of a dynamic graph in which nodes are replaced at each round by an
adversary.

= What about maintaining a dynamic distributed data structure?

Challenges
= Classic distributed protocols do = We need to be very fast in
not work! updating the data structure!
- Powerful (oblivous) adversary = We must spend as "little effort as
, , possible” to maintain the data
= High churn rate (almost linear)

structure!

Some related work

Our Idea WAVE: An O(logn) merge procedure

Four networks approach: (1) A churn resilient overlay network S; (2) A live
queryable network L; (3) A buffer network B of newly added elements; and
(4) a clean network C with all the updates.
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We propose an O(log n) rounds continuous maintenance cycle that preserves Figure 5. lllustration of our novel merge algorithm that merges two skip list of n elements in
the data distributed data structure despite high adversarial churn. O(log n) rounds with high probability.

Dealing with removed nodes Using the Clean network as the new Live network

= The Dynamic Network with churn model (survey by Augustine et al. [1]).
= Skip List-like data structures [4, 3, 2].

Problem Definition

We want to maintain a distributed skip list despite an adversarial churn of
O(n/logn) nodes per rounds where n is the stable network’s size. We must:

= Build and maintain a data structure of all the items/nodes in the network
= Ensure that the data structure can be queried at any time
= Update the data structure as fast a possible

= Be dynamic resource competitive, I.e., effort paid to maintain the data
structure must be proportional to the overall experienced churn.
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S R = O(polylog(n)) bits messages and each node sends/receives
) d) O(polylog(n)) messages per round.

= \Workload proportional to the churn.

Figure 3. lllustration of our novel distributed and parallel skip list partition algorithm that = The skip list is maintained for at least poly(n) rounds w.h.p

removes a batch of nodes from a skip list in O(logn) rounds with high probability.

Qur algorithm: (1) can be used to maintain any skip list-like data structure

_ _ (e.g. skip graphs and skip™ [3, 2]); (2) works with any number of data struc-
Creating the Buffer Network in O(log n) rounds ture’s keys per node; and, (3) can be adapted to maintain any distributed

pointer-based data structure (e.g. graphs).
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