
Doctoral Thesis

Models and Algorithms for Temporal
Betweenness Centrality and Dynamic

Distributed Data Structures

PhD Program in Computer Science: XXXVI cycle

Author:

Antonio Cruciani

antonio.cruciani@gssi.it

Supervisor:

Prof. Francesco Pasquale

pasquale@mat.uniroma2.it

co-Supervisor:

Prof. Pierluigi Crescenzi

pierluigi.crescenzi@gssi.it

February 2025

GSSI Gran Sasso Science Institute

Viale Francesco Crispi, 7 - 67100 L’Aquila - Italy

mailto:antonio.cruciani@gssi.it
mailto:pasquale@mat.uniroma2.it
mailto:pierluigi.crescenzi@gssi.it
http://www.gssi.infn.it
https://goo.gl/maps/9Cj77


To Adelya



Abstract

Networks are ubiquitous mathematical objects for modeling a wide range of real-world

systems, from social networks and communication infrastructures to biological processes

such as protein interactions. A distinctive feature of these real-world networks is that

they evolve over time, with nodes and edges dynamically changing at any time. This

temporal evolution introduces several new challenging problems, ranging from the choice

of the “right” evolving network model that must be considered to the design and anal-

ysis of both centralized and distributed algorithms in many scenarios. In this thesis, we

start by considering temporal graphs, where interactions are timestamped. They offer

a rich model for capturing the dynamics of evolving networks from a centralized per-

spective, but they also introduce new computational challenges, since traditional static

graph algorithms often cannot be directly applied to temporal data. Designing efficient

centralized algorithms for temporal graphs requires dealing with both the structural and

temporal dimensions of the network, while ensuring that solutions are not only accurate

but also scalable. For instance, temporal centrality metrics, such as temporal between-

ness centrality, must account for the ordering and timing of interactions. With respect

to the static case, this complicates their computation but it provides more insightful

results about the importance of the nodes in the network during time. In particular,

temporal betweenness assigns a value to each node that is based on the fraction of op-

timal temporal paths passing through it. Buß et al. (KDD, 2020) gave algorithms to

compute various notions of temporal betweenness centrality, including perhaps the most

natural one –shortest temporal betweenness. Their algorithm computes the centrality

values of all nodes in time O(n3T 2), where n is the size of the network and T is the total

number of time steps. For real-world networks, which easily contain tens of thousands

of nodes, this complexity becomes prohibitive. Thus, it is reasonable to consider fast

approximation algorithms that allow for measuring the relative importance of nodes in

very large temporal graphs. In this thesis, we consider the problem of efficiently com-

puting the temporal betweenness rankings and scores. We start by considering proxies

(i.e., fast heuristics) to approximate the temporal betweenness rankings that take into

account global and local properties of the network. We compare several such proxies

on a diverse set of real-world networks. To this end we define a novel temporal degree

notion called the pass-through-degree, which measures the number of pairs of neighbors

of a node that are temporally connected through it, and we show that such a temporal

degree notion can be computed in nearly linear time for all nodes. Moreover, we observe

that it is surprisingly competitive as a proxy for the temporal betweenness centrality.

Next, we consider the problem of approximating the temporal betweenness scores of all

the nodes in the network. To this end, we develop a novel sampling-based approximation



algorithm that computes probabilistically guaranteed high-quality temporal betweenness

estimates (of nodes and temporal edges). Such an algorithm uses advanced tools from

statistical learning theory and combinatorial optimization to estimate the temporal be-

tweenness of all the nodes up to a small absolute error ε with probability of at least

1 − δ, where ε, δ ∈ (0, 1). We empirically show how the proposed algorithm achieves

tight theoretical guarantees and significantly improves the state-of-the-art in terms of

running time, approximation quality, sample size, and allocated memory, enabling very

precise approximations on very big temporal graphs.

In the second part of the thesis we consider dynamic network models from a distributed

computing perspective, in which designing algorithms that provably work in highly dy-

namic environments presents its own set of non-trivial challenges. Networks undergoing

frequent changes due to node churn (node leaving and joining the network), rapid topol-

ogy shifts, or adversarial behaviors demand decentralized solutions that can adapt in

real time. These challenges emerge mostly in peer-to-peer systems, where the network

structure is constantly evolving. We study the fundamental problem of performing com-

putations in a distributed system subject to a heavy churn rate (i.e., high number of

nodes joining and leaving the network in each round). We begin by extending the model

by Becchetti et al. (SODA, 2020) to obtain dynamic random graph models that evolve

forever: in the first model, edges can be faulty, i.e., each edge at each round disappears

with some probability; in the second one, at every round new nodes join the network

according to a stochastic process and each node currently in the network disappears

with certain probability; in the third one, we consider a combination of the two models

above, in which edges can be faulty and nodes can join and leave the network. We run

extensive simulations to measure how long it takes a message starting at a random node

to reach all, or almost all, the nodes. The simulations show that, for large ranges of the

parameters of the models, the information spreads very fast, i.e., at a rate compatible

with a logarithmic growth, as a function of the number of nodes in the network. We

continue by studying robust and efficient distributed algorithms for building and main-

taining distributed data structures in dynamic graphs on which nodes are continuously

replaced by an oblivious adversary. We present a novel algorithm that builds and main-

tains with high probability a skip list for poly(n) rounds despite O(n/ log n) adversarial
churn per round (n is the “stable” network size). Our algorithm requires a maintenance

overhead proportional to the churn rate. In addition, our algorithm is scalable in the

sense that messages are small and every node sends a limited amount of messages in each

round. A consequence of our maintenance algorithm is that it opens up opportunities

for more general distributed computation in distributed dynamic graph models.
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Chapter 1

Introduction

Networks are fundamental structures used to model relationships and interactions in

a wide variety of real-world systems, ranging from social and communication networks

to biological and transportation systems. While traditional network models typically

assume static relationships, many real-world systems are inherently dynamic: nodes and

edges appear, and disappear over time. Motivated by the need to capture such evolving

properties, there has been an increasing interest in defining suitable mathematical models

that exhibit richer structures than static graph theory. Moreover, there has been an

increasing interest in the study of dynamic or temporal networks theory.

Such innovative models, provide an accurate representation of real-world phenomena

that are not static but rather change over time. Thus, considering dynamic or temporal

networks instead of static ones offers unique perspectives for understanding complex

patterns in systems that change over time. For example, in social networks, interactions

between individuals are not only about who connects with whom but also when these

connections occur. Similarly, in communication networks, the temporal order of mes-

sage exchanges may affect information flow, latency, and overall network performance.

Other examples of systems that are inherently dynamic and that can not modeled/cap-

tured using static graph theory are transportation networks in which an edge between

two nodes represents a route between two bus stations that is available at some pre-

determined schedules dictated by a time table, and biological networks that represent

protein-protein interactions or brain connections.

However, the introduction of an additional dimension (e.g. the time dimension) in

these models comes with a high price and new unique challenges. For example, tradi-

tional graph-theoretic notions, such as centrality, distance-based metrics, and connec-

tivity must be redefined in the context of dynamic/temporal structures that change over

time. A typical example is the non-transitivity of the temporal connectivity, due to the

3
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fact that, because of the temporal constraints, a node u can (temporally) reach a node

v and v can (temporally) reach another node w, but u cannot (temporally) reach w.

Furthermore, using algorithms or techniques for static networks on these richer struc-

tures does not lead to meaningful results and, consequently, it does not capture the

unique dynamic essence that each of these networks has. In addition, solving problems

on such richer structures, usually, turns out to be computationally demanding or even

infeasible (i.e., NP-Hard). For example, counting temporal motifs turns out to be more

difficult on temporal graphs. In particular, counting simple temporal stars turns out

to be NP-Hard [1]. This contrasts with stars in static graphs, which are generally con-

sidered trivial to count (the number of non-induced k-edge stars with center node u is(
du
k

)
where du is the degree of u). For this reason, additional effort must be put into

carefully designing efficient exact or approximate algorithms that provably work under

highly dynamic settings.

Temporal Networks have been proposed as one possible generalization of (static) net-

works. Informally, temporal networks can be seen as edge-labeled graphs in which the

labels are timestamps and they indicate the time instants in which the edges are present

in the network. Identifying influential (i.e., important under some specific definition of

importance) nodes in a network is arguably one of the most important tasks in graph

mining and network analysis. A large variety of centrality measures, all aiming at cor-

rectly quantifying a node’s importance in the network, have been formulated in the

literature. One of the most cited ones is the betweenness centrality, formally introduced

by Freeman [2] in 1997. The betweenness centrality of a node is defined as the sum, over

all pairs of nodes, of the fraction of shortest paths between them that pass through the

given node. This centrality measure has been widely studied on static graphs. However,

the advent of temporal networks introduced the need for a suitable temporal version of

such a centrality measure that considers the temporal aspects of paths in these evolv-

ing networks. Indeed, running the static algorithms for the betweenness centrality on

the underlying graph of the temporal network would completely ignore all the temporal

interactions among nodes and lead to misleading results.

A temporal path can capture the information spreading across a sequence of edges, and

this can be useful in many scenarios such as defining centrality measures over nodes (and

temporal edges) of the network. A temporal centrality measure captures the importance

of a node with respect to some topological (and, in our case, temporal) aspect of the

network. Intuitively, high centrality nodes (or edges) play a much more important role

in the analyzed network than those with a small centrality score. For example, given

a temporal graph of contacts among people, finding the most “influential” node during

the outburst of an epidemic disease could allow us to quickly isolate and minimize the

damage that the disease might cause to the population. An analogous example can
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be formulated for the centrality of the edges of the static fingerprint of the temporal

graph (i.e., the temporal graph without the time instants on the edges). Indeed, finding

the edges with high centrality scores can help (for example) the Ministry of Transport

to identify roads that tend to be highly jammed during the day. Thus to wisely and

efficiently allocate public resources, and build alternative roads to ease the lives of the

citizens that have to commute on these every day. Temporal Betweenness Centrality

considers the number of optimal temporal paths flowing through a specific node or edge.

In Chapter 3 we start our analysis of efficient algorithms for such a centrality mea-

sure on temporal networks by considering proxies (i.e., fast heuristics) for the temporal

betweenness centrality that considers the optimal temporal paths that have minimum

number of transitions [3] (i.e., shortest-temporal paths). Proxies can be more efficiently

computed, and, therefore, allow for measuring the relative importance of nodes in very

large temporal graphs. In this chapter, we compare several such proxies on a diverse

set of real-world networks. These proxies can be divided into global and local proxies.

The considered global proxies include the exact algorithm for static betweenness (com-

puted on the underlying graph), prefix foremost temporal betweenness, which is more

efficiently computable than shortest temporal betweenness, and the recently introduced

approximation approach of Santoro and Sarpe [4]. As all of these global proxies are

still expensive to compute on very large networks, we also turn to more efficiently com-

putable local proxies. Here, we consider temporal versions of the ego-betweenness in

the sense of Everett and Borgatti [5], standard degree notions, and a novel temporal

degree notion termed the pass-through degree, that we introduce in this chapter and

which we consider to be one of our main contributions. We show that the pass-through

degree, which measures the number of pairs of neighbors of a node that are temporally

connected through it, can be computed in nearly linear time for all nodes in the net-

work and we experimentally observe that it is surprisingly competitive as a proxy for

shortest-temporal betweenness.

Chapter 3 points out that there is the need for an efficient approximation algorithm

for the temporal betweenness centrality that can efficiently compute high-quality ap-

proximations of the temporal betweenness scores of all the nodes and edges in temporal

networks and at the same time, maintain a low computational overhead. To this end, we

take a step forward in the temporal betweenness approximation by designing an efficient

approximation algorithm that improves on the state-of-the-art.

In Chapter 4 we present MANTRA, a framework for approximating the temporal be-

tweenness centrality of all nodes in a temporal graph. Our method can compute proba-

bilistically guaranteed high-quality temporal betweenness estimates (of nodes and tem-

poral edges) under all the feasible temporal path optimalities presented in the work
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of Buß et al. [3]. We provide a sample-complexity analysis of our method and speed

up the temporal betweenness computation using a state-of-the-art progressive sampling

approach based on Monte Carlo Empirical Rademacher Averages. Additionally, we pro-

vide an efficient sampling algorithm to approximate the temporal diameter, average path

length, and other fundamental temporal graph characteristic quantities within a small

error with high probability. We support our theoretical results with an extensive exper-

imental analysis on several real-world networks and provide empirical evidence that the

MANTRA framework improves the current state of the art in speed, sample size, and

required space while maintaining high accuracy of the temporal betweenness estimates.

Other examples for which real-world networks are very dynamic are peer-to-peer (P2P)

in which users continuously change over time, wireless and sensor networks where mobile

agents move around and move in and out of each other’s transmission radius, machines

that fail and must be replaced by new ones without compromising the operations that

are running on the remaining network.

One of the best examples of dynamic networks among the ones mentioned above, are P2P

networks in which peers (i.e., nodes) join and leave at a very high rate leading to drastic

network topology changes over time. Another characteristic of these networks is that

they are bandwidth-constrained, very unreliable due to the high node replacement rate,

and the open admission nature (i.e., every user can easily join the network without any

background check) of these systems allows Byzantine (i.e., malicious) nodes to join the

network and try to “disrupt” the system. Due to this high level of dynamicity, performing

efficient computation in distributed dynamic networks is much more challenging than

in traditional static distributed systems. For starters, one has to deal with “failures”

(i.e., nodes joining and leaving the network) as a “habit” rather than an exception. To

continue, time and communication constraints are much more strict, thus it will be too

expensive or even impossible to run a static algorithm from scratch every time that the

topology changes. Moreover, this is not even an option, that is because the network can

change during the new execution of the protocol and make the algorithm “fail”.

We begin our journey in the distributed computing realm by empirically studying the

behavior of the Bitcoin network formation protocol. The Bitcoin protocol is designed

to hide the global network structure: while most of the nodes of the network can be

easily discovered, the existence of an edge between two nodes is only known by the two

endpoints. However, by observing the parameters of the network formation protocol, it is

possible to have an overall intuition of how the network behaves (i.e., adapts to changes

in the topology), and about the performances of fundamental distributed protocols such

as the flooding protocol.
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In Chapter 5 we extend a dynamic random graph model inspired by the network forma-

tion process in the Bitcoin protocol [6] that quickly converges to a static expander graph

with high probability. We extend such a model to obtain dynamic random graph models

that evolve forever: in the first model, edges can be faulty, i.e., each edge at each round

disappears with some probability; in the second one, at every round new nodes join the

network according to a Poisson process and each node currently in the network disap-

pears with certain probability; in the third one, we consider a combination of the two

models above, in which edges can be faulty and nodes can join and leave the network.

We run extensive simulations to measure the “flooding time” in the three models, i.e.,

how long it takes a message starting at a random node to reach all, or almost all, the

nodes. The simulations show that, for large ranges of the parameters of the models, the

flooding time is short, i.e., compatible with a logarithmic growth, as a function of the

number of nodes in the network. Our results also suggest that the default values of the

network formation parameters used in the main implementation of the Bitcoin protocol

seem overwhelmingly safe with respect to the stability of the network, and they might

safely be tuned to reduce network traffic.

Another fundamental problem to address on highly dynamic networks such as P2P

networks is to maintain distributed data structures in the presence of a high churn rate

(nodes leaving and joining at the same time instant). To deal with more structured

data in P2P networks several distributed data structures have been developed such as

Skip Graphs (Aspnes and Shah [7]), SkipNets (Harvey et al., [8]), Rainbow Skip graphs

(Goodrich et al., [9]), and Skip+ (Jacob et al., [10]). They have been formally shown

to be resilient to a limited number of faults (or equivalently small amounts of churn).

However, none of these data structures have theoretical guarantees of being able to work

in a dynamic network with a very high adversarial churn rate, which can be as much as

near-linear (in the network size) per round. This can be seen as a major bottleneck in

the implementation and use of data structures for P2P systems. Furthermore, several

works deal with the problem of the maintenance of a specific graph topology [11–14],

solving the agreement problem [15], electing a leader [16], and storage and search of

data [17] under adversarial churn. Unfortunately, these structures are not conducive to

efficient searching and querying.

In Chapter 6 we study robust and efficient distributed algorithms for building and

maintaining distributed data structures in dynamic Peer-to-Peer (P2P) networks that

are characterized by a high level of dynamicity with abrupt heavy node churn (nodes

that join and leave the network continuously over time). We present a novel algorithm

that builds and maintains with high probability a skip list for poly(n) rounds despite

O(n/ log n) churn per round (n is the stable network size). We assume that the churn is

controlled by an oblivious adversary (that has complete knowledge and control of what
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nodes join and leave and at what time and has unlimited computational power, but it

is oblivious to the random choices made by the algorithm). Moreover, the maintenance

overhead is proportional to the churn rate. Furthermore, the algorithm is scalable since

the messages are small (i.e., at most polylog(n) bits) and every node sends and receives

at most polylog(n) messages per round. Our algorithm crucially relies on novel dis-

tributed and parallel algorithms to merge two n-elements skip lists and delete a large

subset of items, both in O(log n) rounds with high probability. These procedures may

be of independent interest due to their elegance and potential applicability in other con-

texts in distributed data structures. To the best of our knowledge, our work provides the

first-known fully-distributed data structure that provably works under highly dynamic

settings (i.e., high churn rate). Furthermore, they are localized (i.e., do not require any

global topological knowledge). Finally, we believe that our framework can be generalized

to other distributed and dynamic data structures including graphs, potentially leading

to stable distributed computation despite heavy churn.

Organization of the Thesis. Chapter 2 introduces fundamental definitions and

mathematical tools that are utilized throughout the thesis. The thesis is structured

into two main parts: the first focuses on efficient algorithms for temporal graph mining,

while the second explores distributed algorithms for dynamic networks.

In Chapter 3, we discuss efficient heuristics to approximate the temporal betweenness

rankings. In Chapter 4, we introduce a novel approximation algorithm for the temporal

betweenness of all nodes in a temporal network and approximating temporal distance-

metrics using sampling.

In Chapter 5 we discuss several dynamic random graphs models to build resilient net-

works that evolve over time. While in Chapter 6, we propose an efficient distributed

protocol to maintain distributed data structures on highly dynamic networks.

Finally, Chapter 7 concludes the thesis by summarizing key findings and discussing open

problems and future research directions.

The Appendix provides supplementary materials, including additional experiments and

theoretical results. Appendix A presents further theoretical insights on temporal be-

tweenness approximation, along with additional experimental results omitted from Chap-

ter 4. Appendix B includes further experimental results related to the dynamic graphs

introduced in Chapter 5. Lastly, Appendix C outlines useful properties of the random-

ized data structure discussed in Chapter 6, along with additional theoretical findings.



Chapter 2

Background

This chapter introduces our notation and terminology commonly used throughout this

thesis. Additional definitions relevant for individual chapters are introduced where

needed. We proceed by formally introducing the terminology and concepts that we use

in what follows. More precisely, in Section 2.1 we provide key definitions for static and

temporal graphs that are useful to understand the results in Chapter 3 and Chapter 4.

Furthermore, in Section 2.2 we describe the distributed computing model considered in

Chapter 5 and Chapter 6. We conclude this Chapter with the description of the prob-

abilistic tools used throughout this Thesis (see Section 2.3). Finally, we use [k] with

k ∈ N, to denote the set {1, . . . , k}. For a set X we denote its cardinality with |X|.

2.1 Graphs and Temporal Graphs

2.1.1 Static Graphs

We start by introducing standard static, i.e., non-temporal, graphs1. Throughout this

section we mostly focus on directed graphs.

Definition 2.1. A directed (static) graph is a pair G = (V,E), where V = {u1, . . . , un}
is a set whose elements are called vertices or nodes, and E = {(ui, uj) : ui, uj ∈ V ∧i ̸= j}
is the set of directed edges. A graph is said to be undirected if E = {{ui, uj} : ui, uj ∈
V ∧ i ̸= j}.

We denote by n = |V | and m = |E| the number of nodes and edges in a graph, respec-

tively. Furthermore, given a node u ∈ V we refer to N in(u) = {v ∈ V : (v, u) ∈ E}
1We use the terms “graph” and “network” interchangeably.

9
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and Nout(u) = {w ∈ V : (u,w) ∈ E} as the set of in-neighbors and of out-neighbors of

a vertex u ∈ V , respectively. The in-degree, out-degree and degree of a vertex u ∈ V

are defined as din(u) = |N in(u)|, dout(u) = |Nout(u)|, and d(u) = |N in(u) ∪ Nout(u)|,
respectively. We denote by N(u) = {v ∈ V : {u, v} ∈ E} the set of u’s neighbors

in G when the graph is undirected. The (undirected) degree of a vertex u ∈ V is de-

fined as d(u) = |N(u)|. For a subset of nodes U ⊆ V , we call G[U ] := (U,E′), where

E′ := {(u, v) ∈ E : u, v ∈ U}, the induced subgraph of U .

2.1.2 Paths and Betweenness Centrality

Metrics that enable the comparison between different networks or better understanding

of a network’s structure are key tools for data mining on networks. A family of important

metrics are centrality measures for nodes, i.e., functions that assign to each node a score

capturing its centrality in the network. Betweenness centrality [2] is one of the most

famous centrality measures, and it is based on the notion of paths

Definition 2.2. Given a graph G = (V,E), a path p = ⟨e1 = (u1, v1), . . . , ek = (uk, vk)⟩
is a sequence of edges ei ∈ E, 1 ≤ i ≤ k such that ui = vi−1 for 2 ≤ i ≤ k.

In the above definition, path pu1vk from u1 to vk has length |pu1vk | = k. Moreover,

pu1vk is said to be a shortest path from u1 to vk if there does not exists another path

p′u1vk
(with the same endpoints) such that |p′u1vk

| < |pu1vk |. Given a path psz = ⟨e1 =

(s, v1), . . . , ek = (uk, z)⟩ we say that a node v ∈ V is internal to psz if v appears in psz

and it is not one of the two endpoints, i.e., v ∈ psz and v ̸= s ̸= z. Moreover, given a

path psz we refer to Int(psz) = {v ∈ V : v ∈ psz ∧ v is an internal node} as psz’s set of
internal nodes. Notice that there can be multiple shortest paths between s and z and

we denote the set of these paths as Γsz and the number of these paths as σsz = |Γsz|. If
there is no path between s and z, then Γsz = {p∅} where p∅ is an empty path2. Similarly

to σsz, given a node v ∈ V we denote with σsz(v) the number of shortest paths from s

to z to which v is internal to.

Definition 2.3. Given a graph G = (V,E), the normalized betweenness centrality of a

node v ∈ V is defined as,

bv =
1

n(n− 1)

∑
s ̸=v ̸=z

σsz(v)

σsz
∈ [0, 1].

Such a statistic can be computed exactly for every node in the (unweighted) network

in time O(nm) the network’s size using Brandes’s algorithm [18]. Unfortunately, this

2Note that even if p = ∅, the set {p∅} is not empty. It contains one element.
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algorithm quickly becomes impractical on nowadays’ networks with billions of nodes

and edges. Moreover, there is a theoretical evidence, in form of several conditional

lower bounds results [19], for believing that a faster algorithm cannot exists, even for

approximately computing the betweenness.

We conclude this section with the definition of the ego-betweenness centrality. Such a

centrality measure (in undirected graphs) was introduced by Everett and Borgatti [5] as

a more tractable variant of betweenness.

The ego-network G[v] of a node v in a static graph G is the induced subgraph of its in-

and out-neighbors, i.e., G[v] := G[N in(v)∪Nout(v)]. The ego-betweenness (centrality) of

v is the betweenness of v in its ego-network, i.e.,

ego-b(v) := bv(G
[v])

Everett and Borgatti [5] propose an algorithm to compute the ego-betweenness of a

single node in an undirected static graph via computation of the square of the incidence

matrix of the node’s ego-network. We note that in the worst case the ego-network is of

the same size as the original graph. For computing the temporal ego-betweennesses of

all nodes, this algorithm can thus be implemented in time O(nω+1), where ω is matrix

multiplication exponent, i.e., the smallest real number such that two n×n matrices can

be multiplied within O(nω+ε) field operations for all ε > 0. The current best bound on

ω is 2.3728596 [20].

2.1.3 Temporal Graphs

Definition 2.4. A directed temporal graph is an ordered tuple G = (V, E , T ) where V

is the set of nodes, E = {(u, v, t) : u, v,∈ V ∧ u ̸= v ∧ t ∈ T } is the set of (directed)

temporal edges, and T is the set of time instants3 t in which at least one temporal edge

is present in the network at time t.

We denote by n = |V |, M = |E|, and T = |T | the number of nodes and edges in a tem-

poral graph, and the number of unique elements in the set of time instants, respectively.

Similarly for static graphs, given a subset of nodes U ⊆ V , we call G[U ] := (U, E ′), where
E ′ := {(u, v, t) ∈ E : u, v ∈ U}, the induced temporal subgraph of U . Moreover, given a

temporal graph G, it is possible to obtain an underlying static graph4

3The value T denotes the life-time of the temporal graph, and, without loss of generality for our
purposes, we assume that, for any t ∈ T , there exists at least one temporal arc at that time and without
loss of generality we assume T = [1, |T |].

4From now on, we will refer to underlying static graph as underlying graphs.
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Definition 2.5. Given a temporal graph G = (V, E , T ) we denote with GG = (V,E) its

underlying static graph with E = {(u, v) : ∃(u, v, t) ∈ E}.

It is worth mentioning that the GG is often a lossy representation of the network G, since
it ignores the timing of the events in the entire network.

2.1.4 Temporal Paths and Characteristic Quantities

Definition 2.6. Given a temporal graph G = (V, E , T ), and two nodes s, z ∈ V , a

temporal path tpsz ⊆ V × V × T is a (unique) sequence of time-respecting temporal

edges ((u1, u2, t1), . . . , (uk−1, uk, tk−1)) such that for each 1 ≤ i < k, ti < ti+1, every

node ui is visited at most once and u1 = s and uk = z.

Note that in a temporal path we are accounting for the timing of the various edges of

the sequence defining the path. While we are requiring the edges on the above paths to

be strictly increasing with respect to their timestamps (i.e., ti+1 > ti, 1 ≤ i < k − 1),

the techniques we will present can be adapted to work under non-strictly increasing case

(i.e., ti+1 ≥ ti, 1 ≤ i < k − 1) depending on the temporal paths considered. Given a

temporal path tpsz from s to z, as for static graphs, we say that a node v is internal to

tpsz if it appears on a temporal edge in tpsz and is different from s and z. In a temporal

graph, a path from s to z can be optimal according to different criteria, as described

next,

Definition 2.7. Given a temporal graph G = (V, E , T ) and two nodes s, z ∈ V , let

tpsz = ((u1, u2, t1), (u2, u3, t2), . . . , (uk−1, uk, tk−1)) be a temporal path from s to z,

where u1 = s and uk = z. We define different optimality criteria for tpsz as follows:

• Shortest (sh): A temporal path tpsz is shortest if there is no other temporal path

tp′sz from s to z such that |tp′sz| < |tpsz|, where |tpsz| denotes the number of

transitions (hops) in the path.

• Foremost (fm): A temporal path tpsz is foremost if it arrives at z at the earliest

possible time, i.e., for any other temporal path tp′sz with arrival time t′z, it holds

that tz ≤ t′z, where tz is the arrival time of tpsz at z.

• Fastest (fs): A temporal path tpsz is fastest if it minimizes the traversal time, i.e.,

for any other temporal path tp′sz, it holds that (tz − ts) ≤ (t′z − t′s), where ts and

tz are the departure and arrival times of tpsz, respectively.
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• Shortest-Foremost (sfm): A temporal path tpsz is shortest-foremost if there is no

other path tp′sz that both (i) arrives at z earlier than tpsz and (ii) has a minimum

number of transitions.

• Shortest-Fastest (sfs): A temporal path tpsz is shortest-fastest if there is no other

path tp′sz that both (i) has a smaller traversal time (i.e., (t′z − t′s) < (tz − ts)) and

(ii) has a minimum number of transitions.

• Prefix-Foremost (pfm): A temporal path tpsz is prefix-foremost if it is foremost

and, additionally, every prefix tpsv of tpsz (for any intermediate node v) is also

foremost.

Figure 2.1 shows an example of the first three types of temporal paths described in

Definition 2.7:

• (s
1−→ w

5−→ z) is shortest,

• (s
1−→ x

2−→ y
3−→ b

4−→ z) is foremost, and

• (s
3−→ u

4−→ v
5−→ z) is fastest.

1
5

1 2 3 4

3

4

5

s z

w

x y b

u v

Figure 2.1: Example of the optimal-temporal paths: shortest, foremost and fastest
described in Definition 2.7.

To denote the different type of temporal paths we use the term “(⋆)-optimal” temporal

path, where (⋆) denotes the type5. Furthermore, we denote the set of all (⋆)-temporal

paths between two nodes s and z as Γ
(⋆)
sz and we let

TP(⋆)
G =

⋃
(s,z)∈V×V

s ̸=z

Γ(⋆)
sz

In this work, we will heavily rely on two temporal graphs characteristic quantities,

namely the temporal (vertex) diameter and the average temporal path length. Formally,

5When clear from the context, will omit the term “optimal”.
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Definition 2.8. Given a temporal graph G = (V, E , T ), the (⋆)-temporal diameter D(⋆)

and the (⋆)-temporal vertex diameter V D(⋆) are the number of temporal edges and nodes

in the longest (⋆)-optimal path in G, i.e.,

D(⋆) = max
{
|tp(⋆)| : tp(⋆) ∈ TP(⋆)

G

}
and V D(⋆) = D(⋆) + 1

respectively.

And,

Definition 2.9. Given a temporal graph G = (V, E , T ) the average (⋆)-temporal path

length ρ(⋆) is the average number of internal nodes in a (⋆)-temporal path, i.e.,

ρ(⋆) =
1

n(n− 1)

∑
s,z∈V

|Int(tpsz)|.

Next, we provide an alternative definition of the aforementioned characteristic quantities

that relies on the concept of temporal ball. More precisely, we define the (⋆)-temporal

ball centered in u at time 0 of radius h as the set of nodes v that are reachable from u

starting at time 0 by a (⋆)-temporal path of length at most h. Formally,

Definition 2.10. Given a temporal graph G = (V, E , T ), the (⋆)-temporal ball centered

in u at time 0 of radius h is defined as

B(u, h) = {v ∈ V : d(u, v) ≤ h ∧ 1[u⇝ v]}

where, d(u, v) is the number of hops (crossed temporal edges) needed to reach v for the

first time, and 1[u ⇝ v] is the indicator function that assumes value 1 if u can reach v

via a (⋆)-temporal path.

Now define |B(h)| = |{(u, v) ∈ V × V : d(u, v) ≤ h ∧ 1[u⇝ v]}| as the overall pairs of

nodes that can be reached by a (⋆)-optimal path in h steps. The (⋆)-temporal diameter

D(⋆) of a temporal graph can be redefined in terms of |B(h)| as:

D(⋆) = min
h

(
h :
∑
u

|B(u, h)| =
∑
u

|B(u, h+ 1)|
)

(2.1)

Alternatively, we define the (⋆)-temporal effective diameter as the τ(th) percentile (⋆)-

temporal path length between the nodes. We will use this quantity to provide an error

bound for the approximation of D(⋆). Let τ ∈ [0, 1], then

D
(⋆)
τ = min

h

(
h :

∑
u |B(u, h)|∑

u |B(u,D(⋆))| ≥ τ

)
(2.2)
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In a similar way, we can redefine the average (⋆)-temporal path length as

ρ(⋆) =

∑
u∈V

∑D(⋆)−1
h=1 (|B(u, h)| − |B(u, h− 1)|) · h

|B(D(⋆))| =

∑
s,z∈V 1[s⇝ z] · (d(s, z)− 1)∑

u,v∈V 1[u⇝ v]

=

∑
s,z∈V

∑
u∈V 1[u ∈ tpsz]

|B(D(⋆))| (2.3)

Finally, we define the (⋆)-temporal connectivity rate a new measure of connectivity that

allows to quantify “how well connected” a temporal graph is. The (⋆)-temporal con-

nectivity rate is the ratio of the number of couples that are temporally connected by

a (⋆)-temporal path and all the possible reachable couples. Formally, the temporal

connectivity rate is defined as follows:

Definition 2.11. Given a temporal graph G = (V, E , T ) the (⋆)-temporal connectivity

rate is defined as

ζ(⋆) =
1

n(n− 1)

∑
u̸=v

1[u⇝ v] ∈ [0, 1]. (2.4)

Intuitively, the higher the connectivity rate the higher the number of couples that are

connected via at least one (⋆)-temporal path.

2.1.5 Temporal Betweenness Centrality

As for static networks, the importance of nodes in a network can be identified through

the analysis of centrality measures. In this thesis we are particularly interested in the

temporal betweenness centrality, that similarly to static networks, it seeks to pinpoint

nodes that are traversed by a significant number of optimal (temporal) paths. Buß et

al. [3, 21] gave several definitions of the temporal betweenness as a temporal counter-

part of the betweenness centrality, characterized their computational complexity, and

provided polynomial time algorithms to compute these temporal centrality measures.

However, these algorithms turn out to be impractical, even for medium size networks.

Moreover, as previously shown, on temporal graphs, there are several notions of opti-

mal paths. Hence, we have different notions of temporal betweenness centrality as well.

Formally, for any pair (s, z) of distinct nodes (s ̸= z), let σ
(⋆)
sz = |Γ(⋆)

sz | be the number of

(⋆)-temporal paths between s and z, and let σ
(⋆)
sz (v) be the number of the (⋆)-temporal

paths between s and z that pass through node v, with s ̸= v ̸= z. The normalized

temporal betweenness centrality b
(⋆)
v of a node v ∈ V is defined as
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Definition 2.12. Given a temporal graph G = (V, E , T ), the normalized temporal be-

tweenness centrality of a node v ∈ V is defined as

b(⋆)v =
1

n(n− 1)

∑
s ̸=v ̸=z

σ
(⋆)
sz (v)

σ
(⋆)
sz

∈ [0, 1].

Computing such scores for each node in the temporal network, differently from the

static case, is challenging [3]. Unfortunately, computing the temporal betweenness for

some particular optimality criterion is #P-Hard, therefore we will only focus on those

criteria leading to formulations that are computable in polynomial time. Finally, we

extend the ego-betweenness to temporal graphs as follows. The ego-network G[v] of a
node v in a temporal graph G is the temporal graph with the underlying graph G[v] :=

G[N in(v) ∪ Nout(v)] and with the temporal edges being the restriction E to edges in

G[v]. The (⋆)-temporal ego-betweenness of v is the (⋆)-temporal betweenness of v in its

temporal ego-network, i.e.,

ego-b(⋆)v := b(⋆)v (G[v])

Related Work. Nicosia et al. [22] introduced different temporal graph notions, such

as temporal centralities, temporal motif, temporal clustering, temporal modularity, and

temporal communities. Providing top-k algorithms for estimating temporal closeness

centrality has also already been treated in the literature [23, 24]. Subsequently, a close-

ness variant based on bounded random-walks, related to the concept of influence spread-

ing, has been proposed by Haddadan et al. [25]. Furthermore, Tang et al. [26] introduced

temporal variants of both closeness and betweenness centrality based on foremost tem-

poral paths, and experimentally showed the effectiveness of such metrics in spotting

influential users in real-world temporal graphs. Building upon this direction, Tang et

al. [27] used the notion of temporal closeness to provide an empirical analysis of the

containment of malware in real-world mobile phone networks. The Katz centrality [28]

has been adapted to the temporal setting [29, 30] as well, while Rozenshtein et al. [31]

defined the temporal PageRank by replacing random walks with temporal random walks.

Tsalouchidou et al. [32] extended the well-known Brandes algorithm [18] to allow for

distributed computation of betweenness in temporal graphs. Specifically, they stud-

ied shortest-fastest paths, considering the bi-objective of shortest length and shortest

duration. Buß et al. [3] analysed the temporal betweenness centrality considering sev-

eral temporal path optimality criteria, such as shortest (foremost), foremost, fastest,

and prefix-foremost, along with their computational complexities. They showed that,

when considering paths with increasing time labels, the foremost and fastest temporal

betweenness variants are #P -hard, while the shortest and shortest foremost ones can
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be computed in O(n3T 2), and the prefix-foremost one in O(nM logM). Here n is the

number of nodes and M the number of temporal arcs. The complexity analysis of these

measures has been further refined since [21].

Santoro et al. [4] provided ONBRA, the first sampling-based approximation algorithm

for one variant of the temporal betweenness centrality. The input to ONBRA is a

temporal graph, a confidence value δ ∈ (0, 1), and the sample size r. The algorithm

performs a set of r truncated temporal breadth first searches between couples of nodes

sampled uniformly at random and estimates the shortest temporal betweenness using the

temporal equivalent of the ABRA estimator [33] for static networks. ONBRA’s output

is a function of the confidence δ ∈ (0, 1) and the upper bound on the approximation

accuracy ξ ∈ (0, 1) computed using the Empirical Bernstein Bound [34]. More precisely,

with probability 1− δ, the approximation computed by ONBRA is guaranteed to have

absolute error of at most ξ for each node in the temporal graph.

Ghanem et al. [35] defined a temporal version of ego betweenness based on most recent

paths, which are paths that give the most recent information to the destination vertex

about the status of the source, i.e., no other path starts from the source at a later point

in time. Their definition of temporal ego betweenness is snapshot based, i.e., it gives the

ego betweenness of the temporal ego graph at a specific time instant. Simard et al. [36],

on the other hand, studied a continuous-time scenario of the shortest paths betweenness.

Finally, Oettershagen et al. [37] defined a random temporal walks based centrality that

quantifies the importance of a node by measuring its ability to obtain and distribute

information in a temporal network. They provide exact and approximate algorithms for

computing their centrality measures and compare it with the state-of-the-art temporal

centralities, i.e., with PageRank [31], Katz [30], closeness [23, 24], and betweenness [3].

2.2 Dynamic Networks

t1 t2 t3 t4 Time

Figure 2.2: Example of a dynamic graph representation.
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2.2.1 Dynamic Networks with Churn Model

The following model for dynamic networks that incorporates churn was first proposed

in [15] and has since been used in subsequent works with suitable modifications [11, 15–

17]. Henceforth, we will call the model discussed below as the DNC (Dynamic Network

with Churn) model. A key parameter of the DNC model is the churn rate, i.e., the num-

ber of nodes that can join or leave the network. The DNC model is represented by a

graph with a dynamically changing topology (both nodes and edges change from round to

round) whose nodes execute a distributed algorithm and whose edges represent connec-

tivity in the network. The focus will be on time (number of communication rounds) and

number of messages – the two traditional complexity measures of distributed algorithms.

A dynamic network is formally represented by a graph process G = (G0, G1, . . . , Gt, . . . )

where Gt = (Vt, Et) in which each Gt is an undirected graph. In this thesis we consider

two different types of churn rates, random and adversarial.

2.2.2 Random Churn Rate

We consider synchronous dynamic networks that evolve according to some probability

distribution. Communication is via message passing. Nodes can send messages of size

O(log n) bits to each other if they know their IDs, but no more than O(polylog(n))
incoming and outgoing messages per round. A random churn rate can be seen as a

graph process G = (G0, G1, . . . , Gt, . . . ) that generates a new graph at time t given the

one at t− 1. The churn rate follows a specific distribution, i.e., to obtain Gt from Gt−1

a new random number of nodes or edges can be added or deleted.

2.2.3 Adversarial Churn Rate

We consider synchronous dynamic networks controlled by an oblivious adversary. Com-

munication is via message passing. Nodes can send messages of size O(log n) bits to each

other if they know their IDs, but no more than O(polylog(n)) incoming and outgoing

messages per round. The adversary fixes a sequence of nodes V = (V1, V2, . . . , Vi, . . . )

where Vt ⊂ U , for some universe of nodes U and t ≥ 1, denotes the set of nodes present

in the network at round t. For the sake of simplicity in the exposition, we assume that

the number of nodes |Vt| is stable6, i.e., |Vt| ∈ [n, f · n] for some fixed f ≥ 1. Each node

has a unique identifier (ID) chosen from an ID space of size polynomial in n. The edges

must be viewed as a rudimentary set of connections provided by the adversary. The

6This assumption can be relaxed to consider a network that can shrink and grow arbitrarily.
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initial knowledge graph (e.g. G0 = (V0, E0)) can be any reasonable (sparse, low diame-

ter, well-connected, routable, and easily constructable) structure. Moreover, for the first

B = β log n rounds (for a sufficiently large constant β > 0) , called the bootstrap phase,

the adversary is silent, i.e., there is no churn. We can think of the bootstrap phase as

an initial period of stability during which the protocol prepares itself for a harsher form

of dynamism.

After the bootstrap phase, the requirements on the adversary are significantly reduced.

It is only required to ensure that any new node that joins the network must be connected

to a distinct node or set of nodes in the network; this is to avoid too many nodes being

attached to the same node, thereby causing congestion issues. Moreover, the network is

said to be in its maintenance phase during which V can experience churn in the sense

that a large number of nodes may join and leave dynamically at each time step.

The churn rate models the level of churn that the adversary can inflict on V. It is

specified by a pair (C, T ) which implies that within any range of T consecutive rounds,

at most C nodes can be added and (possibly different number of) at most C nodes can

be deleted. Formally, for all t ≥ 1 and 1 ≤ i ≤ T , the adversary must ensure that

|Vt+1 \ Vt| ≤ C and |Vt \ Vt+1| ≤ C. The churn rate we consider is (ε · n,Θ(log n)) for a

suitably small but fixed ε > 0.

Observe that the concept of adversarial churn rate subsumes the random one. This

means that a distributed algorithm that “works” under the adversarial setting, it will

properly run under the random one. However, a protocol that works under random

churn rate is not guaranteed to work under the adversarial one.

2.3 Probabilistic Tools

2.3.1 Concentration Bounds

Here we list some useful concentration bounds that we will use in what follows. We will

use the Hoeffding’s bound in Chapter 4.

Theorem 2.13 (Hoeffding’s inequality [38]). Let X1, . . . , Xn be independent bounded

random variables with ai ≤ Xi ≤ bi, where −∞ < ai ≤ bi < ∞ for all i and µ =

E
[∑n

i=1
xi
n

]
. Then
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Pr

(∣∣∣∣∣
n∑

i=1

Xi

n
− µ

∣∣∣∣∣ ≥ ε

)
= Pr

(∣∣∣∣∣ 1n
n∑

i=1

(Xi −E [Xi])

∣∣∣∣∣ ≥ ε

)
≤ 2e

(
− 2n2ε2∑n

i=1 (bi−ai)
2

)

(2.5)

for all ε ≥ 0.

In Chapter 6, we use the Chernoff bound for the Poisson trials

Theorem 2.14 (Theorem 4.4 [39]). Let X be a sum of n independent Poisson trials Xi

such that Pr (Xi = 1) = pi, for i ∈ [n]. Then,

Pr (X ≥ R) ≤ 2−R for R ≥ 6E [X] (2.6)

Moreover, to provide high confidence bounds for the properties of randomized skip list

we use the following tools.

Theorem 2.15 (Right tail). Let X be a sum of n independent random variables Xi

such that Xi ∈ [0, 1]. Let E [X] = µ. Then,

Pr (X ≥ k) ≤
(µ
k

)k (n− µ

n− k

)n−k

≤
(µ
k

)k
ek−µ for k > µ (2.7)

Pr (X ≥ (1 + ε)µ) ≤
(

eε

(1 + ε)1+ε

)µ

for ε ≥ 0 (2.8)

Theorem 2.16 (Left tail). Let X be a sum of n independent random variables Xi such

that Xi ∈ [0, 1]. Let E [X] = µ. Then,

Pr (X ≤ k) ≤
(µ
k

)k (n− µ

n− k

)n−k

≤
(µ
k

)k
ek−µ for k < µ (2.9)

Pr (X ≤ (1− ε)µ) ≤ e−
µε2

2 for ε ∈ (0, 1) (2.10)

Furthermore, a useful result about the upper tail value of a negative binomial distribution

to a lower tail value of a suitably defined binomial distribution that allows us to use all

the results for lower tail estimates of the binomial distribution to derive upper tails

estimate for negative binomial distribution. This a very nice result because finding

bounds for the right tail of a negative binomial distribution directly from its definition

is very difficult.

Theorem 2.17 (See Chapter 4 in [40]). Let X be a negative binomial random variable

with parameters r and p. Then, Pr (X > n) = Pr (Y < r) where Y is a binomial random

variable with parameters n and p.



Chapter 3

Proxying Betweenness Centrality

Rankings in Temporal Networks

In this chapter we present our contributions to the problem of approximating the tempo-

ral betweenness centrality rankings on very large temporal graphs. We consider proxies

for the shortest temporal betweenness rankings that are more efficiently computed. Fur-

thermore, we present a novel definition of degree of the nodes in temporal graphs that

takes into account the number of length-two temporal paths passing through the nodes.

Throughout the chapter we use the following general approach. We employ a set of

competitor algorithms that we each use as proxies for temporal betweenness rankings,

i.e., for each algorithm, we compute a complete ranking of the nodes and evaluate

how this ranking relates to the “correct” ranking. While different scenarios may exist,

centrality values are frequently used to rank nodes and our proxy notion is motivated

exactly by such applications. Formally, a proxy can be defined as follows:

Definition 3.1 (Proxy). Given a temporal graph G = (V, E , T ), two functions f(·) and
g(·) that assign real valued numbers to all the nodes u ∈ V . Let Rf (V ) and Rg(V ) be

the rankings of the nodes obtained after applying f and g to the temporal graph. We

say that g is a good proxy for f if

Rg(V ) ≈ Rf (V )

Some of the considered proxies have the property that they still try to capture the

global nature inherent in the definition of the shortest temporal betweenness and, as

a consequence, still suffer from a comparatively bad running time, meaning that their

running times are far from linear in the input size. Note however that, as argued, e.g., by

Teng [41], in the age of Big Data, an algorithm should be considered efficient or scalable

21
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if its time complexity is nearly-linear. In fact, there is even theoretical evidence, in form

of several conditional lower bound results [19, 42], for believing that no such algorithm

is achievable, even for approximately computing the betweenness values in static graphs.

We thus shift our focus away from these global proxies towards local proxies for shortest

temporal betweenness rankings. We classify a proxy as local if the centrality values

of nodes are completely determined by the induced subgraph of their neighborhood

(including themselves).

We perform an extensive experimental analysis of several proxies for the temporal be-

tweenness rankings and we show that (in practice) our novel degree notion outperforms

the other proxies in terms of running time and quality of the approximation.

3.1 Contribution

We compare a variety of approaches for proxying shortest temporal betweenness rankings

in terms of their scalability and output quality. We start our study in Section 3.2 with

a comparison of the following proxies: (1) exact algorithm for the static betweenness

computed on the underlying graph, (2) the more efficiently computable prefix foremost

temporal betweenness of Buß et al. and (3) the recently introduced (absolute) approx-

imation approach of Santoro and Sarpe [4]. Our evaluation indicates that the static

betweenness rankings turn out to be quite competitive, the performance of the prefix

foremost temporal betweenness seems somewhat inconsistent, while the quality of the

ranking returned by the considered temporal betweenness approximation algorithm very

much depends on the provided time.

Next, motivated by the fact that static degree centrality is often compared to other

centrality measures, we follow this approach in the temporal setting. In Section 3.3,

we describe our main theoretical contribution: the pass-through degree, a new tempo-

ral degree notion which we believe to be interesting in its own right. Informally the

pass-through degree of a node v measures the number of neighbor pairs of v that are

temporally connected through v, i.e., that have a temporal path of length two between

them that passes through v. We proceed by giving an algorithm that computes the pass-

through degree of all nodes in a given (directed) temporal graph in O(M logm) time,

where M is the number of temporal arcs and m the number of arcs in the underlying

static graph. In other words, the proposed algorithm is scalable in the sense of Teng [41].

In Section 3.4 we compare the following set of local proxies in terms of their efficiency

and quality: (1) temporal versions of the ego-betweenness in the sense of Everett and

Borgatti [5], which entails to compute the betweenness centrality values of the nodes in
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their respective ego-networks (the induced subgraph of a node’s neighborhood including

himself) (2) the pass-through degree, and (3) the approximation algorithm for temporal

betweenness centrality also used as one of the global proxies in Section 3.2, as it is the

only choice from that section that offers scalability in terms of computation time. We

note that the pass-through degree falls somewhere between the simple degree notions and

the ego-betweenness notion in terms of complexity. Our evaluation here indicates that

the ego-networks can be of comparable size as the whole network and, thus, prohibitively

large on some data sets, the pass-through degree usually does not perform worse than

the ego-variants and is at the same time much faster, while the considered approximation

algorithm for temporal betweenness has a more inconsistent performance over different

data sets.

Our experimental evaluation is based on a diverse set of real-world networks that includes

almost all publicly available networks from the works of Buß et al. [3] and Santoro and

Sarpe [4]. We did not include the Karlsruhe network [43] (used in [3]) because it does not

appear to be available anymore. Moreover, we replaced Mathoverflow [44] network (used

in [4]) by a bigger temporal network from a different domain to make the set of analyzed

temporal graphs more diverse. Finally, we excluded Ask Ubuntu and Super User [44]

(also analyzed in [4]) because of the excessive amount of time needed to compute their

exact temporal betweenness rankings.

3.2 Global Proxies for Shortest Temporal Betweenness

In this section, we summarize the results of our experimental study on proxying the

shortest temporal betweenness values in large real-world networks using global proxies.

Recall that a proxy is global, if the centrality value of each node is not purely depen-

dent on its neighborhood. Our general experimental approach here is as follows. We

employ a set of competitor algorithms that we each use as a proxy for shortest temporal

betweenness centrality rankings. That is, for each algorithm, we compute a complete

ranking of the nodes and evaluate (using various metrics) how this ranking relates to

the “correct” ranking computed by the algorithm of Buß et al. [3]. In what follows, we

will call this benchmark algorithm TempBrandes for “Temporal Brandes algorithm”.

Recall that TempBrandes computes the shortest temporal betweenness values of all

nodes in time O(n3T 2).
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3.2.1 Experimental Setting

Global Proxies. As global proxies for shortest temporal betweenness, our study in-

cludes the following algorithms.

Brandes: The classical algorithm of Brandes, which computes the static betweenness

of all nodes in time O(nm) on the underlying graph, i.e., the graph obtained by a

union over all the time steps.1

Pref: The algorithm of Buß et al. [3] for computing the prefix foremost temporal be-

tweennesses pftb in O(nM logM).

ONBRA: The approximation algorithm of Santoro and Sarpe [4], which is a sampling

technique for obtaining an absolute approximation of the shortest temporal be-

tweenness values. The work that introduced this algorithm is rather vague in

terms of how to choose the sample size, stating only that they choose it so as

to make the algorithm run “within a fraction of the time required by the exact

algorithm”. In our study, we choose the number of samples such that the running

time of Onbra is a tenth, a half and roughly equal to the running time of Temp-

Brandes. We achieve this by first estimating the time taken per sample, and

then computing the number of samples by dividing the (fraction of) time needed

by TempBrandes with the computed estimate.

Besides Brandes, which is available in the Graphs.jl library, we implemented Temp-

Brandes and all competitor algorithms in Julia2. We chose to re-implement Temp-

Brandes, Pref and Onbra because the available implementations of TempBrandes

and Pref have issues with the number of paths in the tested networks, causing overflow

errors (indicated by negative centralities). Since Onbra is based on the TempBrandes

code, it results in the same errors. Our implementation uses a sparse matrix representa-

tion of the n×T table used in [3, 4], making the implemented algorithms space-efficient

and allowing to compute the exact temporal shortest betweenness on big temporal graphs

(for which the original version of the code gives out of memory errors). Furthermore, we

noticed another error in TempBrandes and Pref, related to time relabeling causing

an underestimation of centralities.

Networks. We evaluate all of the above competitors on real-world temporal graphs

of different nature, whose properties are summarized in Table 3.1. The networks come

from two different domains.
1We are aware of fast approximation algorithms like Kadabra [45] or SILVAN [46] for the computation

of the static betweenness, but for our purpose here the efficiency of the exact algorithm is sufficient.
2Code available at https://github.com/Antonio-Cruciani/TSBProxy.

https://github.com/Antonio-Cruciani/TSBProxy
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Data set n m M T tSTB nmax
e Type Source

Hypertext 2009 113 4392 41636 5246 263 99 U [47]

High school 2011 126 3418 57078 5609 446 56 U [47]

Hospital ward 75 2278 64848 9453 659 62 U [47]

College msg 1899 20296 59798 58911 894 256 D [44]

Wiki elections 7115 103680 106985 101012 1192 1066 D [44]

High school 2012 180 4440 90094 11273 1345 57 U [47]

Digg reply 30360 85247 86203 82641 1762 284 D [48]

Infectious 10972 89034 831824 76944 4985 65 U [47]

Primary school 242 16634 251546 3100 5607 135 U [47]

Facebook wall 35817 104942 198028 194904 5751 89 D [48]

Slashdot reply 51083 130370 139789 89862 8653 2916 D [48]

High school 2013 327 11636 377016 7375 20642 88 U [47]

Topology 16564 122140 198038 32823 22453 1401 U [49]

SMS 44090 67190 544607 467838 25178 407 D [48]

Email EU 986 24929 327336 207880 31840 346 D [44]

Table 3.1: The temporal networks used in our evaluation, where n denotes the num-
ber of nodes, m the number of arcs in the underlying static graph, M the number of
temporal arcs, T the number of unique time labels, tSTB the execution time of Temp-
Brandes, and nmax

e the maximum number of nodes in the ego network (type D stands
for directed and U for undirected). The networks are sorted in increasing order with

respect to tSTB.

Social networks: This domain includes most of the considered networks: College msg,

Wiki elections, Digg reply, Slashdot reply, a subgraph of Facebook wall [50] con-

taining the last ∼ 200k temporal arcs (as in the work of Santoro and Sarpe [4]),

SMS and Email EU. These are social networks from different realms, where nodes

correspond to users and temporal arcs indicate messages sent between them at

specific points in time.

Contact networks: This domain includes the six networks Hypertext 2009, High school

11/12/13, Hospital ward, Infectious, Primary school and Topology. In the first case

nodes correspond to individuals, while in the second case they correspond to com-

puters. In both cases temporal arcs indicate a contact between nodes at a specific

time.

Evaluation Details. We executed the experiments on a server running Ubuntu 20.04.5

LTS 112 with processors Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz and 112GB

RAM. All the correlation coefficients were computed by making use of the corresponding

functions available in the Python scipy.stats module [51].
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3.2.2 Experimental Results

Experiment 1: Global Proxies’ Correlation to TempBrandes. In our first ex-

periment, we run both TempBrandes and all the discussed global proxies on the net-

works listed in Table 3.1. We then, for each of these four algorithms (TempBrandes

plus three proxies), compute the resulting node ranking and evaluate the correlation of

the rankings computed by the proxies with the ranking computed by TempBrandes.

Here, we employ two different rank correlation measures, i.e., (1) a weighted version of

Kendall’s τ coefficient based on the work of Vigna [52], and (2) the number of common

highest rank nodes among the first k. We also investigated the Spearman’s ρ coeffi-

cient [53] and Kendall’s τ coefficient [54] of the rankings, but we omit these results since

they provide similar results. We, however, note that these measures indicated similar

proxy performance as (1), and at the same time we find (1) more relevant, as it gives more

importance to approximating the upper part of the ranking. For the weighted Kendall’s

τ coeffficient, we use a hyperbolic weighting scheme, as proposed by Vigna [52], that

gives weights to the positions in the ranking which decay harmonically with the ranks,

i.e., the weight of rank r is 1/(r+1). We refrain from comparing the proxies with respect

to average correlation due to outliers.

Network Execution Time (seconds)

TempBrandes Brandes Prefix EgoPrefix EgoSTB PTD

Hypertext 2009 262.58 0.01 2.29 25.14 - 0.01

High school 2011 445.62 0.02 3.39 15.81 - 0.01

Hospital ward 659.13 0.01 2.01 37.97 - 0.01

College msg 894.44 1.12 21.58 4.83 116.53 0.02

Wiki elections 1192.42 6.52 49.84 45.54 586.75 0.06

High school 2012 1345.06 0.03 7.77 232.90 - 0.01

Digg reply 1762.09 123.37 224.58 1.61 4.43 0.05

Infectious 4985.19 3.28 50.26 26.97 820.73 0.11

Primary school 5607.17 0.08 39.22 492.73 - 0.04

Facebook wall 5750.73 349.01 429.38 2.00 17.86 0.07

Slashdot reply 8652.54 442.75 1116.99 7.08 38.78 0.07

High school 2013 20641.71 0.11 95.49 200.89 - 0.09

Topology 22452.98 124.98 1017.78 905.69 - 0.08

SMS 25178.27 129.53 591.98 4.18 476.71 0.09

Email EU 31839.72 0.54 180.86 411.07 - 0.05

Table 3.2: For each network, we show the execution times of TempBrandes and of
all proxies (except for Onbra) in seconds. Dashes indicate that the experiment was
interrupted after the time of TempBrandes elapsed. We omit Onbra from the table
as its running time is fixed to approximately 1/10, 1/2, or 1 times the running time of

TempBrandes due to the choice of the sample size.

Running Times. The running times of the global proxies can be found in the first

three columns of Table 3.2. We note that Prefix always terminates in at most 15%
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of the running time of TempBrandes, while Brandes always finishes in at most 7%

of the running time of TempBrandes. The efficiency of both proxies is particularly

pronounced on contact networks with lots of temporal edges and comparatively few

edges in the underlying graph. As a result the underlying graph is comparatively small,

which is beneficial for Brandes. On the other hand, the number of prefix foremost

shortest paths is also much smaller than the total number of shortest temporal paths,

which is beneficial for Prefix. The running times of the three Onbra versions are fixed

to approximately 1/10, 1/2, and 1 times the running times of TempBrandes due to

the choice of the sample size.
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Figure 3.1: Comparison of the centrality ranking produced by TempBrandes and
the rankings produced by the global proxies. The comparison is given in terms of the

weighted Kendall’s τ coefficient and the intersection of the top 50 nodes.

Ranking Correlation. An illustration of the ranking correlation results of this exper-

iment can be found in Figure 3.1. On top of the figure, we show the Weighted Kendall’s τ

correlation of the rankings computed by the respective proxies and the ranking computed

by TempBrandes. On the bottom, we show the results in terms of the intersection of

the top-k nodes. We choose the value of k to be 50 here.

In terms of the weighted Kendall’s τ correlation (see Table 3.3), we first observe that

there are three (3) networks in which Brandes performs best, five (5) networks in which

Prefix performs best, and ten (10) networks in which Onbra with maximal sample size

performs best (we count networks with ties multiple times). We, however, also notice
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Network weighted Kendall’s τ coefficient

Brandes Prefix Onbra 1
10

Onbra 1
2

Onbra1

Hypertext 2009 0.90 0.67 0.86 0.94 0.96

High school 2011 0.89 0.56 0.82 0.92 0.95

Hospital ward 0.84 0.71 0.82 0.92 0.94

College msg 0.95 0.92 0.89 0.94 0.95

Wiki elections 0.92 0.92 0.84 0.90 0.92

High school 2012 0.90 0.56 0.81 0.89 0.93

Digg reply 0.94 0.99 0.73 0.83 0.86

Infectious 0.92 0.78 0.45 0.67 0.70

Primary school 0.89 0.13 0.88 0.94 0.96

Facebook wall 0.91 0.98 0.80 0.87 0.90

Slashdot reply 0.91 0.96 0.85 0.91 0.92

High school 2013 0.92 0.63 0.86 0.93 0.95

Topology 0.93 0.92 0.89 0.93 0.94

SMS 0.93 0.99 0.73 0.81 0.84

Email EU 0.95 0.88 0.91 0.96 0.97

Table 3.3: For each network, we show the weighted Kendall’s τ coefficient of the
rankings computed by the three global proxies and the ranking computed by Temp-
Brandes. For Onbra we show the results using, respectively, a sample size such that
Onbra’s execution time is 1/10, 1/2, and exactly the one of TempBrandes. For each

instance, we highlight the best result in bold font.

that the Onbra’s performance heavily relies on the used sample size. Indeed, if the

sample size is such that Onbra needs roughly 10% of TempBrandes running time,

we observe that the numbers change as follows: there are eleven (11) networks in which

Brandes achieves the best correlation and there are five (5) networks in which Prefix

performs best, while Onbra never performs best.

As Brandes always terminates in less than 7% of TempBrandes’ running time, and

in most cases much faster, we can conclude that the static betweenness rankings are

actually quite competitive in situations where we are restricted in terms of running

time. In other words, it seems really necessary to give Onbra a running time similar

to the exact algorithm in order for it to outperform Brandes. At this point, we would

like to emphasize that our choice of sample size for Onbra is inherently impractical

as it requires to run the exact algorithm first. We chose this approach in order to

be as fair as possible when evaluating its performance in terms of quality. Choosing its

sample size based on the time of other proxies, as, e.g., Brandes, makes its performance

much worse in comparison. The results based on the intersection measure are somewhat

similar, with Onbra performing slightly better.
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3.3 Pass-Through Degree

Motivated by the fact that the running times of the global proxies employed in the

previous section all grow much faster than linearly, we now turn to local proxies, i.e.,

proxies which compute centrality values purely based on nodes’ neighborhoods. In the

case of static graphs, it is common practice to compare more involved centrality notions

to the simple degree centrality. Motivated by this fact, we here introduce a new degree

notion for temporal graphs, which we will evaluate as a local proxy for shortest temporal

betweenness in what follows. This new degree notion is somewhat related to the ego-

betweenness, but it is in fact even simpler. In the end of this section, we will show that

it can be computed for all nodes in nearly linear time in the number of temporal arcs.

Static Pass-Through Degree. With the aim of a simpler exposition, we start by

giving the definition of our new degree notion for static directed graphs. We first note

that the two standard degree notions in directed graphs, the in-degree din(u) = |N in(u)|
and the out-degree dout(u) = |Nout(u)|, both fail to observe the vertex as a whole,

by taking in-going and out-going arcs into account in isolation. In undirected graphs,

on the other hand, the degree of a vertex also measures the number of neighbor pairs

that can reach each other by passing through u, albeit normalized by the size of the

neighborhood of u. In other words, d(u) = |N(u)|·|N(u)|
|N(u)| . This is, of course, just an

overly complicated way of writing down the identity d(u) = |N(u)|, but we use it as

motivation for defining the analogous degree notion in directed graphs. We actually give

two candidate definitions first, both generalizing the above equality to directed graphs,

and then argue which of the two notions is more reasonable. The two variants of a

directed degree notion that we propose, for a node u ∈ V , are d1(u) :=
|N in(u)|·|Nout(u)|
|N in(u)∪Nout(u)|

and d2(u) :=
√
|N in(u)| · |Nout(u)|. When modeling an undirected graph G = (V,E) as

a directed graph D = (V,A), by introducing two arcs (u, v) and (v, u) for every edge

{u, v} ∈ E, we obtain, for every node u in the undirected graph, N(u) = N in(u) =

Nout(v) and d1(u) = d2(u) = d(u). Thus, both notions are proper generalizations of the

undirected degree.

While at first sight it is not obvious which vertex degree definition is more suitable,

both of them being legitimate generalizations of the undirected degree, one of the two

turns out to be better suited for measuring vertex importance. As the examples in

Figure 3.2 illustrate, the first candidate, d1, has a serious drawback. More formally,

when N in(u) ∪ Nout(u) ∈ {N in(u), Nout(u)}, then d1(u) ∈ {|N in(u)|, |Nout(u)|}. This

in particular means that in such a case, contrary to our initial intention, the degree of

a node depends only on the in-going or the out-going arcs. Since the second candidate
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v1

u1

v2

w1

u2

w2 w3 w4 w5 w6 wk. . .

Figure 3.2: For the first variant, the pass-through degree of vertices u1 and u2 in the
example graphs depicted above is equal. Namely, d1(u1) = |N in(u1)| = 1 = |N in(u2)| =
d1(u2). For the second variant this is not the case, as d2(u1) =

√
2 and d2(u2) =

√
k =

Θ(
√
n), where n denotes the number of nodes in the graph.

does not suffer from this issue, we find it more suitable for defining our directed degree

notion. We now formally define it as the pass-through degree of a node.

Definition 3.2. In a static directed graph G = (V,E), the pass-through-degree of u ∈ V

is defined as

ptd(u) :=
√
|N in(u)| · |Nout(u)|

We point out that the pass-through degree is the geometric mean of in- and out-degree,

the two classical notions of directed degree.

Temporal Pass-Through Degree. The introduced pass-through degree notion nicely

generalizes to temporal graphs. Recall that the pass-through degree of a node u is equal

to the geometric mean of the number of ordered neighbor pairs v, w that are connected

through u. We generalize this to temporal nodes via pairs of neighbors that are tempo-

rally connected via exactly two hops through u. Formally, we write v
u−→ w if and only

if there exist (v, u, tvu) ∈ E and (u,w, tuw) ∈ E such that tvu < tuw. We are now ready

to define the temporal pass-through degree.

Definition 3.3. In a temporal graph G = (V, E , T ), the temporal pass-through-degree of

u ∈ V is

t-ptd(u) :=

√
|{(v, w) ∈ (V \ {u})2 : v u−→ w}|

Computation of the Temporal Pass-Through Degree. Algorithm 1, given the

temporal arc list E of a temporal graph, computes the pass-through degrees inO(M logm) =

Õ(M) time and O(m+n) space, where M is the number of temporal arcs and m,n are,

respectively, the number of arcs and the number of nodes of the underlying static graph.

More precisely, the first for loop (lines 2-7) iterates over all the temporal arcs and builds

two simple labeled directed graphs, G and G, which respectively keep track of the maxi-

mum and the minimum appearance time of each arc from the underlying graph. Building

G and G requires O(M logm) time, as we can maintain a vertex-sorted list of already
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Algorithm 1: Temporal Pass-Through Degree

Data: temporal edge list E
Result: temporal pass-through degree of all vertices t-ptd

1 G,G = {∅} // initialize two empty temporal graphs
2 for each (u, v, t) ∈ E do

// check if the edge already exists in G,G

3 if (u, v) ∈ E(G) then
// update max and min encountered label

4 G(u, v) = max
(
G(u, v), t

)
, G(u, v) = min (G(u, v), t)

5 else

6 add (u, v) to E(G), E(G)

7 G(u, v) = t, G(u, v) = t

8 sort edges of G in ascending order according to time labels
9 Leat = [[·], [·], . . . , [·]] // list of n empty lists

10 for each (u, v, t) ∈ G do
11 Leat[v].append(t)

12 t-ptd = [0, 0, . . . , 0]// initialize array of n zeros

13 for each (v, w, t) ∈ G do
// compute the pass-through degrees

14 t-ptd[v] = t-ptd[v] +
∣∣{t ∈ Leat[v] : t < t}

∣∣
15 return t-ptd

added arcs, and O(m + n) space. Subsequently, the algorithm sorts the m arcs of the

temporal graph G according to their time labels in time O(m logm). The second for

loop (lines 10-11) iterates over all the (now sorted) arcs of the temporal graph G, and

appends the appearance time t of the arc (u, v, t) to the minimum incoming times list of

node v. Since G has exactly m arcs, this loop requires O(m) steps and uses O(m + n)

space. Finally, using O(n) space, the last for loop (lines 13-14) iterates over all the m

temporal arcs (u,w, t) of G and increments the t-ptd variables. More specifically, when

encountering the temporal arc (v, w, t), it increases the previous t-ptd value of v by the

number of distinct in-going temporal arcs of v in G with t < t (line 14). Since Leat[v] is a

sorted lists of length at most n (as G is a simple graph), for each v ∈ V we can compute

the new ptd[u] in O(log n) via binary-search. Therefore, the last loop requires O(m log n)

steps. The overall time and space complexities are therefore O(M logm) = Õ(M) and

O(m+ n), respectively.

3.4 Local Proxies for Shortest Temporal Betweenness

We now turn to an experimental analysis of local proxies for shortest temporal between-

ness. Our approach here is the same as in Section 3.2 and, besides the different choice
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of proxies, our experimental setting is identical. We first list the set of local proxies for

shortest temporal betweenness that our study includes.

EgoSTB: The algorithm for computing the ego-shortest temporal betweenness ego-stb

of all nodes by going through them iteratively, computing the ego-network of the

respective node, and then calling the algorithm of Buß et al. [3] for computing the

shortest temporal betweenness of the node in its ego-network.

EgoPrefix: The algorithm that, analogously to the one above, computes the ego-prefix

foremost temporal betweenness ego-pftb of all nodes.

PTD: The algorithm for computing the temporal pass-through degree of all nodes in

nearly linear time in the number of temporal arcs, described in Section 3.3.

We in addition examine the rankings produced by both the static and temporal versions

of the in- and out-degree (see Table 3.4). The quality of the rankings returned by PTD

is usually much better, and only in a single case (on Infectious) is the obtained Weighted

Kendall’s τ value more than 0.01 worse than for another degree notion.

Network weighted Kendall’s τ coefficient

PTD in-degree out-degree t-in-degree t-out-degree

Hypertext 2009 0.89 0.89 0.89 0.72 0.72

High school 2011 0.76 0.77 0.77 0.40 0.40

Hospital ward 0.82 0.83 0.83 0.85 0.85

College msg 0.95 0.91 0.92 0.90 0.91

Wiki el’s 0.94 0.74 0.72 0.72 0.72

High school 2012 0.81 0.82 0.82 0.50 0.50

Digg reply 0.96 0.84 0.83 0.84 0.83

Infectious 0.65 0.70 0.70 0.42 0.42

Faceb’k w’l 0.93 0.86 0.89 0.85 0.88

Primary school 0.83 0.84 0.84 0.70 0.70

Slashdot reply 0.96 0.78 0.94 0.80 0.94

SMS 0.94 0.84 0.88 0.69 0.81

High school 2013 0.83 0.84 0.84 0.50 0.50

Topology 0.92 0.92 0.92 0.92 0.92

Email EU 0.91 0.87 0.90 0.77 0.83

Table 3.4: For each network, we show the weighted Kendall’s τ coefficient of the
rankings computed by the static/temporal degree notions and the pass-through degree

and the ranking computed by TempBrandes.

Experiment 2: Local Proxies’ Correlation to TempBrandes.
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Network weighted Kendall’s τ coefficient

Onbra 1
10

EgoPrefix EgoSTB PTD

Hypertext 2009 0.86 0.73 - 0.89

High school 2011 0.82 0.69 - 0.76

Hospital ward 0.82 0.77 - 0.82

College msg 0.89 0.94 0.94 0.95

Wiki elections 0.84 0.94 0.94 0.94

High school 2012 0.81 0.81 - 0.81

Digg reply 0.73 0.96 0.96 0.96

Infectious 0.45 0.76 0.81 0.65

Primary school 0.88 0.63 - 0.83

Facebook wall 0.8 0.94 0.94 0.93

Slashdot reply 0.85 0.97 0.97 0.96

High school 2013 0.86 0.83 - 0.83

Topology 0.89 0.92 - 0.92

SMS 0.73 0.95 0.96 0.94

Email EU 0.91 0.91 - 0.91

Table 3.5: For each network, we show the weighted Kendall’s τ coefficient of the rank-
ings computed by the three local proxies and the ranking computed by TempBrandes.
For Onbra we show the results using a sample size such that Onbra’s execution time
is 1/10 the one of TempBrandes. For each instance, we highlight the best result in

bold font.

Running Times. The local proxies’ running times can be found in the last three

columns of Table 3.2. We note that the running time of EgoSTB easily becomes

prohibitively large: in fact, we interrupted its execution once the time of TempBrandes

elapsed, which resulted in eight (8) missing values for EgoSTB. We note that this is

due to the large size of the ego networks, which can be deduced from the nmax
e column in

Table 3.1. We emphasize that the nearly linear time algorithm from the previous section

computes the pass-through degree of all nodes in less than 0.005% of the running time

of TempBrandes on all data sets.

Ranking Correlation. An illustration of the ranking correlation results of this ex-

periment can be found in Figure 3.3. On top of the figure, we show the Weighted

Kendall’s τ correlation coefficient of the rankings computed by the respective proxies

and the ranking computed by TempBrandes (see also Table 3.5). On the bottom, we

show the results in terms of the intersection of the top-k nodes (again k = 50). In order

to allow for better comparison with the results for global proxies from Section 3.2, in

all the tables and plots that follow, we also include the fastest variant of Onbra, i.e,

the variant with roughly 10% of TempBrandes’ running time. We observe that the

pass-through degree usually does not perform worse than the ego-variants of the shortest
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Figure 3.3: Comparison of the centrality ranking produced by TempBrandes and
the rankings produced by the local proxies and Onbra with the smallest considered
sample size. The comparison is given in terms of the weighted Kendall’s τ coefficient

and the intersection of the top 50 nodes.

temporal betweenness and is at the same time much faster. In terms of both weighted

Kendall’s τ coefficient and the intersection measure, the pass-through degree performs

better or at least as good as the considered version of Onbra on 10 out of 15 instances.

At the same time its running time is between 3 and 4 orders of magnitudes smaller on

all instances.
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Figure 3.4: A two-dimensional illustration of ranking quality in terms of weighted
Kendall’s τ coefficient (on the horizontal linear axis) and the ratio between the proxies
execution time and the time of TempBrandes (on the vertical logarithmic axis). The
shapes of the points indicate the network, while the color indicates the proxy. On the
top and on the right we plot the median value of the weighted Kendall’s τ and the time
ratio, respectively. We note that the running time ratios of the three Onbra variants

are fixed to 1/10, 1/2, and 1, respectively.



Chapter 4

Approximating the Temporal

Betweenness Centrality through

Sampling

In this chapter we present an approximation algorithm for obtaining high-quality, proba-

bilistically guaranteed estimates of the temporal betweenness centrality values of all the

nodes in a temporal network. We then evaluate with an extensive experimental anal-

ysis on several real-world networks and provide empirical evidence that our proposed

algorithm “MANTRA” improves the current state of the art in speed, sample size, and

required space while maintaining high accuracy of the temporal betweenness estimates.

4.1 Contribution

We proposeMANTRA (teMporAl betweeNnes cenTrality thRough sAmpling), a rigorous

framework for the approximation of the temporal betweenness of all the vertices and

temporal edges in large temporal graphs. In particular, we present the following results:

(1) We extend the state-of-the-art estimator [4] to all the feasible temporal between-

ness centrality variants described in [3].

(2) We derive new bounds on the sufficient number of samples to approximate the

temporal betweenness centrality for all nodes1, that are governed by three key

quantities of the temporal graph, such as the temporal vertex diameter, average

temporal path length, and the maximum variance of the temporal betweenness

1The sample complexity analysis holds also for the temporal edges.

35
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centrality estimators. Moreover, this result solves an open problem in [46, 55] on

whether the sample complexity bounds for the static betweenness can be efficiently

extended to temporal graphs. As a consequence, it significantly improves on the

state-of-the-art results for the temporal betweenness estimation process [4]. Ad-

ditionally, our analysis of sample complexity presents further challenges regarding

the efficient computation of the three quantities upon which the bounds for the

necessary sample size depend.

(3) We propose a novel algorithm to efficiently estimate the key quantities of interests

in (2) that uses a mixed approach based on sampling and counting. The time

complexity of our approach is Õ( logn
ε2

M), while the space complexity is O(n+M).

We provide an estimate on the sample size needed to achieve good estimates up to

a small error bound. More precisely, we prove that r = Θ( logn
ε2

) sample nodes are

sufficient to estimate, with probability at least 1−1/n2: (i) the temporal (effective)

diameter D(⋆) with error bounded by ε
ζ(⋆)

; (ii) the average temporal path length

ρ(⋆) with error bounded by εD
(⋆)

ζ(⋆)
; and, (iii) the temporal connectivity rate ζ(⋆).

(4) We define MANTRA, a progressive sampling algorithm that uses an advanced

tool from statistical learning theory, namely Monte Carlo Empirical Rademacher

Averages [56] and the above results (e.g. (1-3)) to provide a high quality approx-

imation of the temporal betweenness. MANTRA’s output is a function of two

parameters: ε ∈ (0, 1) controlling the approximation’s accuracy, and δ ∈ (0, 1)

controlling the confidence of the computed approximation. Our novel approach

improves on ONBRA [4] (i.e., the state-of-the-art algorithm) in terms of running

time, sample size, and allocated space.

(5) We support our theoretical analysis with an extensive experimental evaluation, in

which we compare MANTRA with ONBRA.

4.2 Preliminaries

Here we introduce additional background needed only for this chapter.

4.2.1 Temporal Graphs, and Paths.

A directed temporal graph is an ordered tuple G = (V, E , T ) where V is the set of nodes,

E = {(u, v, t) : u, v,∈ V ∧ u ̸= v ∧ t ∈ T } is the set of (directed) temporal edges, an T is

the set of time instants2 t in which at least one temporal edge is present in the network at

2Recall that we assume T = [|T |], i.e., we assume that the time instants are mapped to the first |T |
integers.
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time t. Given two distinct nodes s and z, a temporal path tpsz from s to z can be described

as a time-ordered sequence of vertex appearances tpsz = ((u1, t1), (u2, t2), . . . , (uk, tk))

such that u1 = s, and uk = z. The vertex appearances (u1, t1) and (uk, tk) are called

endpoints of tpsz and the temporal nodes in Int(tpsz) = tpsz\{(u1, t1), (uk, tk)} are called
internal vertex appearances of tpsz. Unlike paths on static graphs, in the temporal setting

there are several concepts of optimal paths (e.g., shortest, foremost, fastest [3, 21, 57],

see Definition 2.7). Moreover, as for the static betweenness, the task of computing the

desired centrality measure boils down to the ability of efficiently counting the overall

number of optimal paths. Unfortunately, it has been already shown that such task turns

out to be #P-Hard for some temporal path optimalities (e.g. foremost, fastest) [3, 21].

Hope is left for the shortest (and all its variants) and the prefix foremost temporal paths.

We formally describe those that can be efficiently counted.

Definition 4.1. Given a temporal graph G, and two nodes s, z ∈ V . Let tpsz be a

temporal path from s to z, then tpsz is said to be:

(1) Shortest (sh) if there is no tp′sz such that |tp′sz| < |tpsz|;

(2) Shortest-Foremost (sfm) if there is no tp′sz that has an earlier arrival time in z

than tpsz and has minimum length in terms of number of hops from s to z;

(3) Prefix-Foremost (pfm) if tpsz is foremost and every prefix tpsv of tpsz is foremost

as well.

To denote the different type of temporal paths we use the same notation of Buß et al.

[3]. More precisely, we use the term “(⋆)-optimal” temporal path, where (⋆) denotes the

type. Furthermore, we denote the set of all (⋆)-temporal paths between two nodes s and

z as Γ
(⋆)
sz and we let TP(⋆)

G to be the union of all the Γ
(⋆)
sz ’s, for all pairs (s, z) ∈ V × V of

distinct nodes. In this chapter, we will heavily rely on two temporal graphs characteristic

quantities, namely the temporal (vertex) diameter V D(⋆) and the average temporal path

length ρ(⋆) (see Chapter 2 for the formal definitions)3.

4.2.2 Temporal Betweenness Centrality.

As previously shown, on temporal graphs, there are several notions of optimal paths.

Hence, we have different notions of temporal betweenness centrality [3] as well. Formally,

let G = (V, E , T ) be a temporal graph. For any pair (s, z) of distinct nodes (s ̸= z), let

σ
(⋆)
sz be the number of (⋆)-temporal paths between s and z, and let σ

(⋆)
sz (v) be the number

3Recall that the (⋆)-temporal vertex diameter is defined as V D(⋆) = D(⋆) + 1
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of the (⋆)-temporal paths between s and z that pass through node v, with s ̸= v ̸= z.

The normalized temporal betweenness centrality b
(⋆)
v of a node v ∈ V is defined as

b(⋆)v =
1

n(n− 1)

∑
s ̸=v ̸=z

σ
(⋆)
sz (v)

σ
(⋆)
sz

We refer to Appendix A for the definition of the (⋆)-temporal betweenness of the tem-

poral edges. Whenever we use the term (⋆)-temporal paths we consider (⋆) to be one

of the optimality criteria in Definition 4.1. We observe that the average (⋆)-temporal

path length is equal to the sum of the (⋆)-temporal betweenness centrality over all nodes

v ∈ V .

Lemma 4.2. ρ(⋆) =
∑

v∈V b
(⋆)
v

Proof. We can write the (⋆)-temporal betweenness as

b(⋆)v =
1

n(n− 1)

∑
s ̸=v ̸=z

σ
(⋆)
sz (v)

σ
(⋆)
sz

=
1

n(n− 1)

∑
s,z∈V

∑
tp∈Γ(⋆)

sz

1[v ∈ Int(tp)]

σ
(⋆)
sz

summing over all the nodes, we obtain

∑
v∈V

b(⋆)v =
1

n(n− 1)

∑
s,z∈V

∑
tp∈Γ(⋆)

sz

1

σ
(⋆)
sz

∑
v∈V

1[v ∈ Int(tp)]

=
1

n(n− 1)

∑
s,z∈V

σ
(⋆)
sz

σ
(⋆)
sz

∑
v∈V

1[v ∈ Int(tpsz)] =
1

n(n− 1)

∑
s,z∈V

|Int(tpsz)| = ρ(⋆)

4.2.3 Supremum Deviation and Empirical Rademacher Averages

Given a set of real-valued functions F from a domain D to the interval [a, b] ⊂ R. We

denote a sample S from a probability distribution π where each s ∈ S is sampled i.i.d.

from π. The empirical average of a function f ∈ F over a sample S is

af (S) =
1

|S|

|S|∑
i=1

f(si)

Moreover, given a random sample S from a distribution π, we define the expected value

of f ∈ F taken with respect to S as:

ES∼π [f ] = ES∼π [af (S)]
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that can be seen as the “true” value of af (S) according to the distribution π. A central

question in statistics is how well af (S) approximates its expectation ES∼π [f ]. The Cen-

tral Limit Theorem (CLT) provides an asymptotic result that shows af (S) converging to

its expected value when |S| goes to infinity. In this chapter we are interested in bounding

the rate of the convergence with finite-sample bounds. In order to obtain such estimates,

we use the concept of supremum deviation (SD) SD(F ,S) as the maximum difference

in absolute value between af (S) and its expected value over all f ∈ F . Formally,

Definition 4.3. Let F be a set of real-valued functions from a domain D to the interval

[a, b] ⊂ R. Consider a sample S sampled from D according to a probability distribution

π. Then the supremum deviation is defined as

SD(F ,S) = sup
f∈F

∣∣∣∣∣∣ 1|S|
|S|∑
i=1

f(si)−ES∼π [f ]

∣∣∣∣∣∣
The SD is the key concept in the study of empirical processes [58]. Sample-dependent

quantities, such as the popular Empirical Rademacher average (ERA) [59] can be used

to derive probabilistic upper bounds to the SD.

Definition 4.4. Let F ,D and S defined as before. Moreover, let λ ∈ {−1,+1}|S| be a

vector of i.i.d. Rademacher random variables, then the Empirical Rademacher average

(ERA) of F on S is

R(F ,S) = Eλ

sup
f∈F

1

|S|

|S|∑
i=1

λif(si)



Computing the ERA R(F ,S) is usually intractable, since there are 2|S| possible as-

signments for λ and for each such assignment a supremum over F must be computed.

Here, we use a sharp probabilistic upper bound on the ERA that uses Monte-Carlo

estimation [56].

Definition 4.5. Let F ,D,S defined as before and let λ ∈ {−1,+1}c×|S| for c ≥ 1,

be a c × |S| matrix of i.i.d. Rademacher random variables. Then the c-Monte-Carlo

Empirical Rademacher average (c-MCERA) of F on S using λ is

Rc
|S|(F ,S,λ) =

1

c

c∑
j=1

sup
f∈F

1

|S|

|S|∑
i=1

λj,if(si)

The c-MCERA allows to obtain sharp data-dependent probabilistic upper bounds on

the SD, as they directly estimate the expected SD of sets of functions by taking into
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account their correlation. Moreover, they are often significantly more accurate than

other methods [46, 55, 60], such as the ones based on loose deterministic upper bounds

to ERA [33], distribution-free notions of complexity such as the Hoeffding’s bound or

the VC-Dimension, or other results on the variance [4, 34]. Furthermore, a key quantity

governing the accuracy of the c-MCERA is the empirical wimpy variance [61] WF (S),
that for a sample of size r is defined as

WF (S) = sup
f∈F

1

r

r∑
i=1

(f(si))
2

Theorem 4.6 (Theorem 4.1 in [46]). For c, r ≥ 1, let λ ∈ {−1,+1}c×r be a c × r

matrix of Rademacher random variables, such that λj,i ∈ {−1,+1} independently and

with equal probability. Then, with probability at least 1− δ over λ, it holds

R(F ,S) ≤ Rc
r(F ,S,λ) +

√
4WF (S) ln(1/δ)

cr
(4.1)

We are ready to state the technical result of this section

Theorem 4.7. Let F be a family of functions with codomain in [0, 1], and let S be a

sample of r random samples from a distribution π. Denote v̂ such that supf∈F Var(f) ≤
v̂. For any δ ∈ (0, 1), define

R̃ = Rc
r(F ,S,λ) +

√
4WF (S) ln(4/δ)

cr
(4.2)

R = R̃+
ln(4/δ)

r
+

√(
ln(4/δ)

r

)2

+
2 ln(4/δ)R̃

r

ξ = 2R+

√
2 ln(4/δ) (v̂ + 4R)

r
+

ln(4/δ)

3r
(4.3)

With probability at least 1− δ over the choice of S and λ, it holds SD(F ,S) ≤ ξ.

The proof of this theorem follows the one by Pellegrina and Vandin in [46], for com-

pleteness we show the adapted proof. Moreover, we make use of the following theorem

to prove Theorem 4.7.

Theorem 4.8 ([61]). With probability at least 1− δ over S, it holds

R(F , r) ≤ R(F ,S) +
√(

ln(1/δ)

r

)
+

2 ln(1/δ)R(F ,S)
r

+
ln(1/δ)

r
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Proof. (Of Theorem 4.7) Define the following four events:

E1 = “R(F ,S) > R̃”, E2 = “R(F , s) > R̃”, E3 = “ sup
f∈F
{µS(f)− µπ(f)} > ξ”,

and E = “SD(F ,S) > ξ”.

By applying the union bound on these events we obtain:

Pr (E) ≤ E1 + E2 + E3

Now we can upper bound the probabilities of the single events by applying the sym-

metrization lemma (Theorem 14.20 in [39]), Theorem 2.3 in [62] and Theorem 4.8 re-

placing δ/4 in the equations: Pr (E1) ≤ δ/4 follows from Theorem 4.6 by replacing δ

with δ/4; Pr (E2) ≤ δ/4 follows from Theorem 4.8; and, Pr (E3) ≤ δ/4 follows after

using the symmetrization lemma and twice Theorem 2.3 in [62]. Moreover, the event E

is true with probability at most δ.

4.2.4 Sample Complexity and Vapnik Chervonenkis dimension

A range space is a pair (D,R) where D is a (finite or infinite) domain and R is a (finite

or infinite) family of subsets of D. The members of D are called points and those of R
are called ranges. The Vapnik-Chervonenkis (VC) Dimension of (D,R) is a measure of

the complexity of expressiveness of R [63]. Having an upper bound to the VC-dimension

of a range space can be very useful: if we define a probability distribution π over D, then
a finite upper bound to the VC-dimension of (D,R) implies a bound to the number of

random samples from π required to approximate the probability π(D) =∑x∈R π(x) of

each range R simultaneously using the empirical average of R as an estimator.

Given a H ⊆ D, the projection of R on H is defined as PR(H) = {R ∩ H : R ∈ R}.
If |PR(H)| = 2|H|, then H is said to be shattered by R. The VC-dimension of a range

space is the size of the largest subset H that can be shattered by R, formally:

Definition 4.9. The VC-dimension of a range space (D,R) denoted by VC(R) is

VC(R) = max
{
d : ∃H ⊆ D such that |H| = d ∧ |PR(H)| = 2d

}

Having an upper bound to the VC-dimension allows to obtain

Theorem 4.10 (Adaptation of Theorem 2.12 [64], see also [65]). Let (D,R) be a range

space with VC(R) ≤ d, let π be a distribution on D and F a family of functions defined
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on D. Given, ε, δ ∈ (0, 1), let

ℓ =
h

ε2

(
d+ log

1

δ

)
(4.4)

where h is an universal constant. Then, a bag S ⊆ D of ℓ elements sampled independently

according to π

SD(F ,S) ≤ ε

with probability at least 1− δ.

The constant h is approximately 0.5 and it is universal, i.e., it does not depend on any

parameter [66]. To understand the importance of Theorem 4.10 consider the following

example. Assume that R contains a finite number of ranges and let π be the uniform

distribution on D, and S be a sample of points drawn uniformly and independently at

random from D. We can compute the sample size |D| needed to obtain a SD(R,S) of

at most ε with probability 1− δ by using the Hoeffding’s [38] bound (see below) and the

union bound [39]. Indeed, using the union bound we have that

Pr

( ⋃
H∈R

|aH(S)−ES∼π [aH(S)]| > ε

)
≤
∑
H∈R

Pr (|aH(S)−ES∼π [aH(S)]| > ε)

≤ 2|R|e−2|S|ε2

The above inequality tells us that to obtain a SD(R,S) of at most ε with probability

1− δ we can safely stop sampling as soon as 2|R|e−2|S|ε2 ≤ δ, i.e., after the size of S is

|S| = 1

2ε2
log

(
2|R|
δ

)
(4.5)

where aH(S) = |H ∩ S|/|S| and SD(R,S) = sup
H∈R

|aH(S)−ES∼π [aH(S)]|.

Comparing this quantity with (4.4) clearly shows the multiple advantages of VC-dimension.

For starters, the sample size suggested by (4.4) is smaller than the above as soon as the

upper bound to the VC-dimension of the range space is smaller than log(2|R|). Sec-

ondly, Theorem 4.10 holds for any distribution π and no assumption are made on it

or any of its moments (e.g., on its variance). We use this property in Section 4.3.2 to

develop efficient sampling-based randomized approximation algorithms for the temporal

betweenness centrality.
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4.3 MANTRA: temporal Betweenness Centrality Approx-

imation through Sampling

4.3.1 Temporal Betweenness Estimator

In this section we present one unbiased estimator4 for the (⋆)-temporal betweenness

centrality and we refer to Appendix A for an additional two estimators of the temporal

betweenness that have been excluded from this chapter to maintain a cleaner exposition.

The ONBRA (ob) algorithm [4] uses an estimator defined over the sampling space

Dob = {(s, z) ∈ V × V : s ̸= z} with uniform sampling distribution πob over Dob, and

family of functions Fob that contains one function b̃
(⋆)
ob(v) → [0, 1] for each vertex v,

defined as

b̃
(⋆)
ob(v|s, z) =

σ
(⋆)
sz (v)

σ
(⋆)
sz

∈ [0, 1]

So far, this approach has been defined only for the shortest-temporal betweenness. In

this chapter, we extend ob to shortest-foremost and prefix foremost temporal paths.

Lemma 4.11. The function computed by ob is an unbiased estimator of the (⋆)-temporal

betweenness centrality.

Proof.

E
[
b̃
(⋆)
ob(v|s, z)

]
=
∑
s,z∈V
s ̸=z ̸=v

Pr ((s, z)) · b̃(⋆)ob(v|s, z) =
∑
s,z∈V
s ̸=z

1

n(n− 1)

σ
(⋆)
sz (v)

σ
(⋆)
sz

We chose to display the results for ob throughout the chapter because among all the

temporal betweenness estimators, it is the one that provides the best trade-off between

speed and quality of approximation (see Appendix A for a detailed discussion).

4.3.2 Sample Complexity bounds

We present two bounds (Equation (4.6) and Theorem (4.13)) to the sufficient number of

random samples to obtain an ε approximation of the (⋆)-temporal betweenness centrality.

Given a temporal graph G = (V, E , T ), with a straightforward application of Hoeffding’s

4An estimator of a given parameter is said to be unbiased if its expected value is equal to the true
value of the parameter.
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inequality and union bound [39], it can be shown that r = 1/(2ε2) log (2n/δ) samples

suffice to estimate the (⋆)-temporal betweenness of every node up to an additive error ε

with probability 1−δ. To improve this bound, we define the range space associated to the

(⋆)-temporal betweenness and its VC-dimension. Let U = TP(⋆)
G , define the range space

R = (D,F+) where D = U× [0, 1], and F+ is defined as follows: for a pair (s, z) ∈ V ×V
and a temporal path tpsz ∈ U let f(v,t)(tpsz) = f((v, t)|s, z) = 1[(v, t) ∈ Int(tpsz)] be

the function that assumes value 1 if the vertex appearance (v, t) is in the temporal path

between s and z. Moreover, define the family of functions F = {f(v,t) : (v, t) ∈ V × T }
and notice that for each f(v,t) ∈ F there is a range Rf(v,t) = {tpsz : tpsz ∈ U}. Next,

define F+ = {Rf(v,t) : f(v,t) ∈ F}. Now that we defined the range set for our problem,

we can give an upper bound on its VC-dimension.

Lemma 4.12. The VC-dimension of the range space R is V C(R) ≤ ⌊logVD(⋆)−2⌋+1.

Proof. Let V C(R) = d, where d ∈ N. Then, there is S ⊂ D such that |S| = d and S

is shattered by F+. For each temporal path tpsz ∈ U , there is at most one pair tpsz in

S. By definition of shattering, each tpsz ∈ S appears in 2d−1 different ranges in F+.

Moreover, each tpsz is in at most |tpsz| − 2 ranges in F+, that is because tpsz /∈ Rf(v,t)

when (v, t) /∈ tpsz. Observe that |tpsz|−2 ≤ VD(⋆)−2, gives 2d ≤ |tpsz|−2 ≤ VD(⋆)−2.

Thus, d− 1 ≤ log(VD(⋆) − 2) since d ∈ N, we have:

d ≤ ⌊log VD(⋆) − 2⌋+ 1 ≤ log(VD(⋆) − 2) + 1

Given the VC-dimension of the range set R we apply Theorem 4.10 and we obtain that

r =
h

ε2

[
⌊log VD(⋆) − 2⌋+ 1 + ln

(
1

δ

)]
(4.6)

samples suffice to compute an upper bound on the SD of at most ε with probability

at least 1 − δ for the (⋆)-temporal betweenness centrality. To improve this bound, we

make use of Lemma 4.2 and notice that (as for the static case [46]) the (⋆)-temporal be-

tweenness centrality satisfies a form of negative correlation among the nodes. Moreover,

the existence of a node v with high (⋆)-temporal betweenness constraints the sum of the

centrality measure over the remaining nodes to be at most ρ(⋆) − b
(⋆)
v . In other words,

this suggests that the number of nodes with high (⋆)-temporal betweenness cannot be

arbitrarily large. Furthermore, as in [46], we assume that the maximum variance of the

(⋆)-temporal betweenness estimators b̃
(⋆)

v is bounded by some estimate v̂ rather than

the worst-case upper bound of 1/4 considered in [45]. This implies that the estimates

b̃
(⋆)

v are not bounded by the number of nodes in the temporal graph G, but are tightly
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constrained by the parameters ρ(⋆) and v̂. We are able to extend the results in [46] for

the static scenario to the temporal setting for all the variants of temporal betweenness

that can be computed in polynomial time and cover one of the problems left open by

the authors. It follows that:

Theorem 4.13. Let F = {b̃(⋆)v , v ∈ V } be a set of function from a domain D to [0, 1].

Define v̂ ∈ (0, 1/4] and ρ(⋆) ≥ 0 such that

max
v∈V

Var(b̃
(⋆)

v ) ≤ v̂ and
∑
v∈V

b(⋆)v ≤ ρ(⋆)

Fix ε, δ ∈ (0, 1), and let S be an i.i.d. sample taken from D of size

|S| ∈ O
(
v̂ + ε

ε2
ln

(
ρ(⋆)

δv̂

))

It holds that SD(F ,S) ≤ ε with probability 1− δ over S.

The proof of this theorem follows the one in [46] by considering the properties of the

(⋆)-temporal betweenness. For completeness, we show the adapted proof.

Proof. Given a sample S of size s, let E and Ev be the following events:

E = “∃v ∈ V : |b(⋆)v − b̃
(⋆)

v | > ε” and Ev = “|b(⋆)v − b̃
(⋆)

v | > ε”

Applying the union bound we have that Pr (E) ≤∑v∈V Pr (Ev). Define the functions

g(x) = x(1− x) and h(x) = (1 + x) ln(1 + x)− x for x ≥ 0, and let x̂1, x̂2, x̂ as

x̂1 = inf

{
x :

1

2
−
√

ε

2
− ε2

9
≤ x ≤ 1

2
, g(x)h

(
ε

g(x)

)(
2ε2
)}

x̂2 =
1

2
−
√

1

4
− v̂ and, x̂ = min{x̂1, x̂2}

Moreover, using Hoeffding’s and Bennet’s bounds [61], Bathia and Davis bound on

variance [67] and from the fact that maxv∈V Var(f(v)) ≤ v̂, it holds, for all v ∈ V

Pr (Ev) ≤ 2min
{
exp

(
−2sε2

)
, exp

(
−sγ(v̂,b(⋆)v , ε)

)}
.
= η(x)

where γ(v̂,b
(⋆)
v , ε) = min{v̂, g(b(⋆)v )}h

(
ε

min{v̂,g(b(⋆)v )}

)
. Now we can write

Pr (E) ≤
∑
v∈V

Ev =
∑
v∈V

Φ(b(⋆)v ) (4.7)
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Observe that the values of b
(⋆)
v are not known a priori, thus it is not possible to compute

the r.h.s. of Equation (4.7). However, we can obtain a sharp upper bound by using the

constraints on the possible values of b
(⋆)
v imposed by v̂ and ρ(⋆). As in [46] we define

an appropriate optimization problem w.r.t. the unknown values of b
(⋆)
v . Let kx be the

number of nodes that we assume have b
(⋆)
v = x, define the optimization problem over

the variables kx as follows:

max
∑

x∈(0,1)
kx>0

kxΦ(x)

subject to
∑

x∈(0,1)
kx>0

xkx ≤ ρ(⋆),

0 ≤ kx ≤ ρ(⋆)

x , kx ∈ N

Observe that the first constraint follows from Lemma 4.2, and the second one directly

by the definition of ρ(⋆) itself. The values of the objective function of the optimal

solution of the optimization problem give and upper bound to Equation 4.7. As for the

static case [46], the optimization problem is a formulation of the Bounded Knapsack

Problem [68] over the variables kx in which items with label x are selected kx times

with unitary profit Φ(x) and weight x. Moreover, we consider the upper bound to the

optimal solution given by the continuous relaxation, in which kx ∈ R, of the optimization

problem (see Chapter 3 of [68]). Four our purpose, its enough to fully select the item with

higher profit-weight ratio to fill the entire knapsack. Let x = argmaxx∈(0,1){Φ(x)/x},
the optimal solution of the continuous relaxation is kx = ρ(⋆)/x, kx = 0, for all x ̸= x,

while the optimal objective is ρ(⋆)Φ(x)
x ≥ Pr (E). Moreover, observe that x always exists

and Φ(x)/x ∈ (0, 1). The search of x can be simplified by exploiting the same approach

used in [46] that leads to

Pr (E) ≤ sup
x∈(0,min{x̂1,x̂2})

{
ρ(⋆)η(x)

x

}
≤ sup

x∈(0,x̂)

{
ρ(⋆)γ(g(x), s, ε)

x

}

Setting s ≥ sup(0,x̂)

{
ln(2ρ

(⋆)

xδ )/(g(x)h( ε
g(x)))

}
it holds that Pr (E) ≤ δ. In order to

approximate s, the r.h.s. of the equation can be computed using a numerical proce-

dure [46, 55] obtaining the following approximation:

s ≈ 2v̂ + 2
3ε

ε2

(
ln

(
2ρ(⋆)

v̂

)
+ ln

(
1

δ

))
∈ O

(
v̂ + ε

ε2
ln

(
ρ(⋆)

δv̂

))

Since ρ(⋆) correspond to the average number of internal nodes in (⋆)-temporal paths in G,
it must be that ρ(⋆) ≤ D(⋆). In all the analyzed networks (see Figure 4.2 in Section 4.4)



Models and Algorithms for Temporal Betweenness Centrality and Dynamic Distributed Data Structures 47

this condition holds, thus this approach will need a smaller sample size compared to the

VC-Dimension based one to obtain an ε-approximation of the (⋆)-temporal betweenness.

We show how to estimate v̂ = supf∈F Var [f ] using the empirical wimpy variance

WF (S). Proposition 4.14 is an adaption of Proposition 4.3 [46] when we are using

only a unique family of function F rather than a partition. For completeness we provide

the adapted proposition and the proof.

Proposition 4.14 ([46]). Let F = {b̃(⋆)v , v ∈ V } be a set of function from a domain D
to [0, 1]. And let S ⊆ D be a sample of size r. Then, with probability at least 1 − δ it

holds

sup
f∈F

Var [f ] ≤ WF (S) +
ln(1/δ)

r
+

√(
ln(1/δ)

r

)2

+
WF (S) + ln(1/δ)

r
(4.8)

Proof. By definition,

sup
f∈F

Var [f ] = sup
f∈F

{
E
[
f2
]
−E [f ]2

}
≤ sup

f∈F
E
[
f2
]

(4.9)

Thus we focus on bounding supf∈F E
[
f2
]
. By a straightforward application of Theorem

7.5.8 in [69] we have the claim of the lemma.

4.3.3 Fast approximation of the characteristic quantities

According to Equation (4.6) and Theorem (4.13), the sample size needed to achieve

a desired approximation depends on the vertex diameter and on the average tempo-

ral path length of the temporal graph. However, under the Strong Exponential Time

Hypothesis (SETH), the (⋆)-temporal diameter (thus the average (⋆)-temporal path

length) of a temporal graph G = (V, E , T ) can not be computed in Õ(M2−ε)5 [70],

which can be prohibitive for very large temporal graphs, so efficient approximation al-

gorithms for these characteristic quantities are highly desirable. Some algorithms for

the diameter approximation on temporal graphs have been proposed [70, 71]. How-

ever these techniques consider different temporal path optimality criteria [71], or have

no theoretical guarantees [70]. In this chapter, we define a novel sampling-based ap-

proximation algorithm to efficiently obtain a high-quality approximation of D(⋆) (thus,

V D(⋆)) and ρ(⋆) in Õ(r · M) where r is the number of samples used for the approx-

imation. The high-level idea of the algorithm is that given a temporal graph G, the
5With the notation ˜O(·) we ignore logarithmic factors.
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sample size r, and the temporal path optimality (⋆), the algorithm performs r (⋆)-

temporal BFS visits [72] ((⋆)-TBFS) from r random nodes and keeps track of the num-

ber of reachable pairs encountered at each hop along with the greatest hop performed.

s

Figure 4.1: Ex-
ample of a temporal
BFS visit and of the
ball centered in s.

Once all the r visits have been completed, it computes the

temporal diameter and other useful temporal measures us-

ing an approach based on the relation between the num-

ber of reachable pairs and the distance metrics (see Sec-

tion 2.1.4). Formally Algorithm 2, given a temporal graph

G = (V, E , T ), a number of seeds r and the temporal

path optimality of interest (⋆) draws a sample S of r ran-

dom nodes from V , runs a temporal graph traversal from

each si ∈ S, and iteratively grows the ball B(si, h) =

{v ∈ V : d(si, v) ≤ h ∧ 1[si ⇝ v]} for each h such that there

exists at least one temporally reachable node that has not is

B(si, h−1) and is temporally reachable by at leas one node

v ∈ B(si, h − 1). Once all the nodes in S have been pro-

cessed, it computes an upper bound on the average number

of internal nodes ρ(⋆) (Equation 2.3), the temporal effec-

tive diameter D
(⋆)
τ (Equation 2.2), the temporal diameter

D
(⋆)
LB (Equation 2.1) and the temporal connectivity rate ζ(⋆)

(Equation 2.4).

Algorithm 2: (⋆)-temporal (effective) diameter approximation

Data: Temporal graph G, sample size r, temporal path optimality (⋆), and
effective (⋆)-temporal diameters’s threshold τ

Result: Termpoal diameter lower bound D
(⋆)
LB, effective diameter D

(⋆)
τ , temporal

connectivity rate ζ(⋆) , upper bound on ρ(⋆)

1 R = [0, 0, . . . , 0] // Nr. of temporally reachanble pairs at each hop

2 D
(⋆)
LB = 0; ρ(⋆) = 0;D

(⋆)
τ = −1

3 for k = 0 to r − 1 do
4 u = sample u.a.r. a node from V

5 R,D
(⋆)
LB = (⋆)-TemporalBFS(G, u,R,D

(⋆)
LB) // Update R and D

(⋆)
LB

6 for h = 0 to DLB − 1 do
7 R[h] = n

r ·R[h]

8 ρ(⋆) = ρ(⋆) + (R[h]−R[h− 1]) · h // R[−1] threaded as 0 when h = 0

9 ρ(⋆) = ρ(⋆)/R[D
(⋆)
LB]

10 D
(⋆)
τ = minh

(
h : R[h]

R[D
(⋆)
LB ]
≥ τ

)
11 ζ(⋆) =

R[D
(⋆)
LB ]

n(n−1)

12 return D
(⋆)
LB, D

(⋆)
τ , ζ(⋆), ρ(⋆)
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The approximation guarantees of our sampling algorithm strongly depend on “how tem-

porally connected” a temporal graph is, i.e., depend on the temporal connectivity rate

ζ(⋆). Intuitively, the higher the connectivity rate the higher the number of couples

that are connected via at least one (⋆)-temporal path and the better the approximation

computed by Algorithm 2. Furthermore, the algorithm has the following theoretical

guarantees:

Theorem 4.15. Given a temporal graph G = (V, E , T ) and a sample of size r = Θ
(
lnn
ε2

)
,

the algorithm computes:

I) D(⋆) with absolute error bounded by ε
ζ(⋆)

;

II) D
(⋆)
τ with absolute error bounded by ε

ζ(⋆)
;

III) ρ(⋆) with absolute error bounded by ε·D(⋆)

ζ(⋆)
;

IV) ζ(⋆) with absolute error bounded by ε.

with probability at least 1− 2
n2 .

Proof. Let h be the (⋆)-temporal effective diameter threshold, and

Xh
i =

n ·∑{u:d(vi,u)≤h} 1[vi ⇝ u]∑
u,v∈V
u̸=v

1[u⇝ v]
=

n · |N(vi, h)|
|N(D(⋆))|

observe that Xh
i ∈ [0, 1

ζ(⋆)
], and that Xh

i ’s expected value is

E
[
Xh

i

]
=
∑
vi∈V

Xh
i ·Pr (vi) =

∑
vi∈V |N(vi, h)|
|N(D(⋆))| =

|N(h)|
|N(D(⋆))|

Applying Hoeffding’s inequality, with ξ = ε
ζ(⋆)

, we can approximate |N(h)|
|N(D(⋆))| by

∑
i∈[r] X

h
i

r =

n·
∑

i∈[r] |N(u,vi)|
r·|N(D(⋆))| , and taking a sample of r = lnn

ε2
leads an error of ε

ζ(⋆)
with probability

of at least 1 − 2
n2 . Now we observe that the (⋆)-temporal diameter can be defined in

terms of the effective one by choosing τ = 1, thus the bound holds also for the (⋆)-

temporal diameter. Next, define the random variable XD
i = |N(vi,D

(⋆))|
n−1 , and observe

that XD(⋆)

i ∈ [0, 1]. Observe that its expected value is exactly ζ(⋆):

E
[
XD(⋆)

i

]
=
∑
vi∈V

1

n

|N(vi, D
(⋆))|

n− 1
=
|N(D(⋆))|
n(n− 1)

= ζ(⋆)
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Again, applying Hoeffding’s inequality, with ξ = ε, and taking r = lnn
ε2

sample nodes,

we have an error bound of ε with high probability. Finally, define

Xi =
n ·∑u∈V 1[vi ⇝ u] · d(vi, u)∑

u,v∈V 1[u⇝ v]

Observe that Xi ∈ [0, D
ζ(⋆)

], and that its expectation is the average shortest temporal

distance

E [Xi] =
∑
vi∈V

Xi ·Pr (Xi) =

∑
vi,u∈V 1[vi ⇝ u] · d(vi, u)∑

u,v∈V 1[u⇝ v]

Finally, by using Hoeffding’s inequality with ξ = εD
ζ(⋆)

and setting r = logn
ε2

we obtain

that the error is of at most εD
ζ(⋆)

with probability 1− 2
n2 .

Observe that Algorithm 2 is general, it can be used to compute several notions of tem-

poral diameter [37, 70–73].

4.3.4 The MANTRA Framework

In this section we introduce MANTRA6, our algorithmic framework for the (⋆)-temporal

betweenness centrality estimation. MANTRA incorporates the bounds in Section 4.3.2

to compute an upper bound on the minimum sample size needed to approximate the SD

of the (⋆)-temporal betweenness and a state-of-the-art progressive sampling technique

to speed-up the estimation process. The input parameters to MANTRA are: a temporal

graph G, a temporal path optimality (⋆) ∈ {sh, sfm,pfm}7, a target precision ε ∈ (0, 1),

a failure probability δ ∈ (0, 1), and a number of iterations for the bootstrap phase s′.

The output is a vector B of pairs (v, b̃
(⋆)

v ) for each v ∈ V , where b̃
(⋆)

v is the estimate

of b
(⋆)
v and B is probabilistically guaranteed to be an absolute ε approximation of the

temporal betweenness. Formally:

Theorem 4.16. Given a target accuracy ε ∈ (0, 1) and a failure probability δ ∈ (0, 1),

with probability at least 1 − δ (over the runs of the algorithm), the output vector B =

{b̃(⋆)v : v ∈ V } (obtained from a set of samples S) produced by MANTRA is such that

SD(B,S) ≤ ε.

Proof. Each coordinate in b̃
(⋆)

v , v ∈ V is a sample mean (over a sample S of size r) of

a specific function associated to an unbiased estimator for b
(⋆)
v . Algorithm 3 stops if

6teMporAl betweeNness cenTrality appRoximation through sAmpling
7We point out that our approach is general, and can be extended to every definition of temporal

betweenness centrality.
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the number of the drawn samples is at least ω or if the supremum deviation bound ξ

is at most ε. In other words it stops when the SD(F ,S) ≤ ε and in both cases this is

guaranteed (by Theorem 4.13 or Theorem 4.7) to happen with probability 1− δ.

Algorithm 3: MANTRA

Data: Temporal graph G, (⋆) temporal path optimality, precision ε ∈ (0, 1), failure
probability δ ∈ (0, 1), bootstrap iterations s′, and number of Monte Carlo
trials c.

Result: Absolute ε-approximation of the (⋆)-tbc w.p. of at least 1− δ.
1 B,W = [0, . . . , 0] ∈ Rn // tbc and wimpy variance arrays
2 i, k = 0; ξ = 1;S0 = {∅}
3 ω, v̂ = DrawSufficientSampleSize(G, s′, δ/2)
4 {si}i≥1 = SamplingSchedule(ω, v̂, δ)
5 λ = [[·]] // Empty matrix
6 while true do
7 i = i+ 1; k = (1.2 · si−1)− si−1

8 X = DrawSamples(G, k)// Draw k samples from the sample space Dob

9 Si = Si−1 ∪ X
10 λ = Add R.R.Vector(k,λ) // Add a Rade. rnd. column of length c
11 B,W,λ =Update(⋆)-TemporalBetweenness(X ,B,W,λ)

12 R̃, vF =UpdateEstimates(B,W,λ, |Si|, k, c)
13 Rc

k = 1
c

∑c
l=1maxv∈V

{
R̃[v, l]

}
14 ξ = ComputeSDBound(Rc

k, vF , δ/2
i, |Si|) // Compute Eq. 4.3 in Thm. 4.7

15 if |Si| ≥ ω or ξ ≤ ε then return {(1/|Si|) · B[u] : u ∈ V }

Algorithm 3’s execution is divided in two phases: the bootstrap phase (lines 3-4) and the

estimation phase (lines 6-15). As a first step, MANTRA, computes an upper bound ω

to the number of samples needed to achieve an ε approximation (line 2). The procedure

runs s′ independent (⋆)-TBFS visits from s′8 random couples of nodes (s, z) sampled

from the population Dob, estimates v̂ and ρ(⋆), and then plugs them in Theorem 4.13 to

obtain ω. Subsequently, it infers the first element of the sample size {si}i≥1 by perform-

ing a binary search between s′ and ω to find the minimum s1 such that Equation 4.3

(with R set to 0) is at most ε and terminates the bootstrap phase. Such approach

gives an optimistic first guess of the number of samples to process for obtaining an

ε-approximation [46]. Subsequently it continues with the estimation phase in which,

at each iteration, it increases each si with a geometric progression [74], i.e., such that

si = 1.2 · si−1. Next, it proceeds by drawing uniformly at random k = si − si−1 couples

of nodes (s, z) from Dob and subsequently updating the overall set of samples sampled

so far (lines 7-9). Consequently, k new Rademacher random vectors are added as new

columns to the matrix λ and k (⋆)-TBFS visits are performed (line 11). Moreover, while

iterating over the new sample X the temporal betweenness, wimpy variances and the

8In this chapter we use s′ = log(1/δ)/ε.
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values in λ are updated. After this step, the coefficients of Equation 4.3 and the new

estimate on the SD, ξ, are computed (lines 12-13). As a last step of the while loop, the

algorithm checks whether the desired accuracy ε has been achieved, i.e., whether the

actual number of drawn samples is at least ω or ξ is at most ε (line 15). If at least one

of the two conditions is met, MANTRA normalizes and outputs the current estimates

B. We conclude this section with the analysis of MANTRA’s running time.

Theorem 4.17. Given a temporal graph G = (V, E , T ) and a sample of size r, MANTRA

requires time Õ(r · n · T ) and Õ(r ·M) to compute the shortest (foremost)-temporal and

the prefix-foremost-temporal betweenness, respectively. Moreover, MANTRA requires

O(n+M) space.

Proof. MANTRA performs r truncated (⋆)-TBFS visits and regularly check the stop-

ping condition until convergence. The running times of the temporal traversals de-

pend on the type of path optimality we consider. Moreover, each TBFS requires

O(n ·T · log (n · T )) [3, 72] to compute the shortest (foremost) temporal betweenness and

O(M · logM) to compute the prefix-foremost temporal betweenness. Furthermore, to

compute and check the stopping condition of the progressive sampler we need roughly

linear time in n. Thus MANTRA’s running time is O(r ·n·T ·log(n·T )) = Õ(r ·n·T ) for
the shortest and shortest foremost temporal betweenness and O(r ·M ·logM) = Õ(r ·M)

for the prefix-foremost temporal betweenness. Finally, we observe that the space required

by MANTRA is O(n +M + c · n) observe that c is a fixed constant (c = 25), thus the

overall needed space is O(n+M).

Theorem 4.16 together with Theorem 4.17 provide theoretical evidence that MANTRA

computes a rigorous estimation of the (⋆)-temporal betweenness and that scales to the

size of the input temporal graph. Moreover, it improves over the state-of-the-art ap-

proach ONBRA [4]. Indeed, given a sample of size r, ONBRA stores a n × r matrix

to compute the absolute ξ-approximation9 using the Empirical Bernstein Bound [34].

Thus, ONBRA may require an arbitrary large sample size (e.g. large matrix) to achieve a

target absolute approximation ε, making the algorithm not ideal to analyze big temporal

graphs.

4.4 Experimental Evaluation

In this section, we summarize the results of our experimental study on approximating

the (⋆)-temporal betweenness centrality in real-world temporal networks.

9ξ is the upper bound on the SD(S,F) obtained using the Empirical Bernstein Bound.
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4.4.1 Experimental setting

We compare our novel framework with ONBRA [4]. For the sake of fairness, we adapted

the original fixed sample size algorithm to use the same progressive sampling approach

of our framework. Every time an element of the sampling schedule is consumed, the

algorithm computes the upper bound ξ on the SD using the Empirical-Bernstein bound

as in [4], if ξ is at most the given ε, it terminates, otherwise it keeps sampling. We

set ONBRA’s maximum number of samples to be equal to the VC-Dimension upper-

bound in Section 4.3.2. We implemented all the algorithms in Julia exploiting paral-

lel computing10. We chose to re-implement the exact algorithms [3] and ONBRA [4]

because they have issues with the number of paths in the tested networks11, causing

overflow errors (indicated by negative centralities), and with the time labeling caus-

ing an underestimation of centralities [76]. Our implementation uses a sparse matrix

representation of the n × |T | table used in [3, 4], making the implemented algorithms

space-efficient and usable on big temporal graphs (for which the original version of the

code gives out of memory errors). We executed all the experiments on a server running

Ubuntu 16.04.5 LTS with one processor Intel Xeon Gold 6248R 32 cores CPU @ 3.0GHz

and 1TB RAM. For every temporal graph, we ran all the algorithms with parameter

ε ∈ {0.1, 0.07, 0.05, 0.01, 0.007, 0.005, 0.001} chosen to have a comparable magnitude to

the highest temporal betweenness values in the network (see b
(⋆)
max in Table 4.1). This

is a basic requirement when computing meaningful approximations12. Moreover, we

use δ = 0.1 and use c = 25 Monte Carlo trials as suggested in [46, 77]. Finally, each

experiment has been ran 10 times and the results have been averaged.

4.4.2 Networks

We evaluate all the algorithms on real-world temporal graphs of different nature, whose

properties are summarized in Table 4.1. The temporal networks come from three differ-

ent domains:

Social networks. This domain includes most of the considered networks: College msg,

Digg reply, Slashdot reply, Facebook Wall, Mathoverflow, SMS, Askubuntu, and

Wiki Talk. These are social networks from different realms, where nodes corre-

spond to users and temporal arcs indicate messages sent between them at specific

points in time.

10Code available at: https://github.com/Antonio-Cruciani/MANTRA
11The overflow issue appears on all the transportation networks provided in [75].
12It is meaningless to compute an ε-approximation when the maximum centrality value is smaller than

ε.

https://github.com/Antonio-Cruciani/MANTRA
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Contact networks. For the Topology network, nodes correspond to computers and

temporal arcs indicate a contact between nodes at a specific time.

Transport networks. Bordeaux is part of the Kuala et al. [75] public transport net-

works collection. In such temporal graph, nodes are public transport stops and a

temporal arcs indicate routes at a specific point in time. Because of their “inher-

ent temporality”, these networks are characterized by a big number of temporally

connected nodes.

Figure 4.2 summarizes some key properties of the temporal graphs in Table 4.1. Fur-

thermore, it also displays the approximation computed using Algorithm 2. Such ap-

proximations have been computed by running Algorithm 2 ten times using 256 random

seeds and then averaging the results. In general, we observe that there is a big dif-

ference between D(⋆) and ρ(⋆), and that our sampling-based approximation algorithm

provides very good estimates of these characteristic quantities even with a small sample

size. Moreover, Figure 4.3 shows the comparison between All-Pairs-(⋆)-Temporal-Paths

(i.e., the exact algorithm) and our approximation algorithm with a sample size of 256

random nodes. More precisely, Figure 4.3 displays the ratio between the running time

(in seconds) of the exact algorithm and Algorithm 2. We observe that the approxi-

mation algorithm provides a huge speed-up without compromising the quality of the

approximation of these fundamental quantities.

Data set n |E| |T | ζ b
(pfm)
max b

(sh)
max b

(sfm)
max Type Source

College msg 1899 59798 58911 0.5 0.0718 0.0319 0.0365 D [44]

Digg reply 30360 86203 82641 0.02 0.0019 0.0015 0.0016 D [48]

Slashdot 51083 139789 89862 0.07 0.0128 0.0074 0.0085 D [48]

Facebook Wall 35817 198028 194904 0.04 0.0034 0.0024 0.0028 D [48]

Topology 16564 198038 32823 0.53 0.0921 0.0654 0.0681 U [49]

Bordeaux• 3435 236075 60582 0.84 0.1210 0.1383 0.1269 D [75]

Mathoverflow 24759 390414 389952 0.33 0.0522 0.0282 0.0287 D [44]

SMS 44090 544607 467838 0.008 0.0019 0.0010 0.0012 D [44]

Askubuntu 157222 726639 724715 0.169 0.0214 0.0156 0.0154 D [44]

Super user 192409 1108716 1105102 0.21 0.0261 0.0165 0.0182 D [44]

Wiki Talk 1094018 6092445 5799206 0.069 0.0089 0.0155 0.0153 D [49]

Table 4.1: The data sets used in our evaluation, where ζ indicates the exact tempo-

ral connectivity rate, b
(⋆)
max the maximum (⋆)-temporal betweenness centrality (type D

stands for directed and U for undirected). • indicates that we need to use BigInt data
type instead of Unsigned Int128 to count the number of shortest (foremost)-temporal

paths to avoid overflows.

4.4.3 Experimental Results

Efficiency and Scalability. In our first experiment, we compare the average execu-

tion times, sample sizes and allocated memory of MANTRA and ONBRA. Here we show

the results on the data sets in Table 4.1 for the prefix-foremost and shortest temporal
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(a) (b)

Figure 4.2: Comparison between the temporal diameter and the average number of
internal nodes for the Shortest (foremost) and Prefix-Foremost temporal path opti-
malities. The approximation has been computed (over 10 runs) using our sampling

algorithm using 256 random seed nodes.
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Figure 4.3: Ratio between the running time of the Exact algorithm for the temporal
distance-based metrics and our approximation algorithm for the Shortest (foremost) and
Prefix-Foremost temporal path optimalities. The approximation has been computed

(over 10 runs) using our sampling algorithm using 256 random seed nodes.

betweenness, for a subset of ε ∈ {0.01, 0.007, 0.005, 0.001} and we refer to Appendix A

for the complete battery of experiments. We chose to display the results for the pfm

temporal path optimality because it is the one for which the analyzed graphs have the

highest characteristic quantities (see Figure 4.2). Thus, under this setting, the tested

algorithms will need a bigger sample size and potentially a higher amount of memory.
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This somehow provides an intuitive “upper bound” on the algorithms performances in

terms of efficiency and scalability. Furthermore, we also show the experiments for the sh

temporal betweenness. That is one of the most computationally intensive temporal path

optimalities for the temporal betweenness among the one considered in this chapter.

Moreover, the experiments for the sfm temporal betweenness follow similar trends of the

ones displayed int his chapter. Figure 4.4 shows the comparison of the running times (in

seconds) for the pfm and sh temporal betweenness. We observe that MANTRA leads

the scoreboard against its competitor on all the tested networks. Our novel framework

is at least three times faster than ONBRA. Such speedup is mainly due to the smaller

sample size needed to terminate. Furthermore, Figure 4.5 shows that MANTRA requires

a smaller sample size (at least three times smaller) to converge. This early convergence,

in practice, does not affect the approximation quality and leads to very good temporal

betweenness approximations (see the next experiment). Furthermore, the number of

samples needed by MANTRA varies among temporal graphs, with a strong dependence

on b
(⋆)
max. A potential cause of the difference in the sample sizes between the two algo-

rithms may depend on the use of the Empirical Bernstein bound. Such bound (as the

VC-Dimension one) is agnostic to any property of the analyzed temporal network, thus

results in a overly conservative guarantees. This suggests that variance-adaptive bounds

are preferable to compute data-dependent approximations [46], and that exploiting cor-

relations among the nodes through the use of the c-MCERA leads to refined guarantees.

Moreover, we point out that ONBRA does not scale well as the target absolute error ε

decreases. Indeed, the memory needed by ONBRA increases drastically as the target

absolute error decreases (see Figure 4.6) to the point of giving out of memory error for

big temporal networks such as Slashdot, SMS, Askubuntu, Superuser, and Wiki Talk.

This can lead to major issues while computing meaningful ε-approximations, especially

under the setting in which the maximum temporal betweenness b
(⋆)
max is very small (for

which we need to choose an ε value of at most b
(⋆)
max

13). Unfortunately, this is not an

uncommon feature of real-world temporal networks. Indeed, as shown by ζ and b
(⋆)
max

in Table 4.1 they tend to be very sparse. This experiment, suggests that MANTRA is

preferable for analyzing big temporal networks up to an arbitrary small absolute error

ε.

Comparison with the exact algorithms scores and running times. As a first

step in our second experiment, we investigate the accuracy of the approximations pro-

vided by MANTRA by computing the exact temporal betweenness centrality of all the

nodes of the temporal network in Table 4.1 and measuring the SD over all the ten runs.

Figure 4.7 supports our theoretical results, as we always get a SD of at most the given ε.

13We recall that b
(⋆)
max can be efficiently approximated in the bootstrap phase of our framework.
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Moreover, we point out that the exact algorithms for the shortest (foremost) temporal

betweenness required a time that spanned from several hours (e.g. for SMS) to days

(for Askubuntu, and Superuser ≈ a week) and weeks (for Wiki Talk ≈ a month). In-

stead, MANTRA completes the approximation in reasonable time. Figure 4.8(a) shows

the relation between the sample size and the running time of our framework. While,

Figure 4.8(b) shows the amount of time needed by MANTRA to provide the absolute

ε-approximation in terms of percentage of exact algorithm’s running time. We display

the running times on the biggest temporal graphs for the sh temporal betweenness be-

cause is one of the “critical” temporal path optimalities that requires longer times to

be computed (see Theorem 4.17). We can conclude that our framework is well suited

to quickly compute effective approximations of the temporal betweenness on very large

temporal networks.



Models and Algorithms for Temporal Betweenness Centrality and Dynamic Distributed Data Structures 58

101 102 103 104 105

Running time MANTRA (s)

101

102

103

104

105
R

un
ni

ng
ti

m
e

O
N

B
R

A
(s

)
Running time comparison for Prefix Foremost

(a)

103 105 107

Running time MANTRA (s)

103

105

107

R
un

ni
ng

ti
m

e
O

N
B

R
A

(s
)

Running time comparison for Shortest

(b)

Figure 4.4: Experimental analysis for ε ∈ {0.01, 0.007, 0.005, 0.001}. Comparison
between the running times for the pfm (a), and sh (b) of ONBRA and MANTRA.
The black line indicates that the two algorithms require the same amount of time, gray
line (followed by a red mark) indicates that the algorithm required more than 1TB of

memory to run on that data set with that specific ε value.
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Figure 4.5: Experimental analysis for ε ∈ {0.01, 0.007, 0.005, 0.001}. Comparison
between the sample sizes for the pfm (a) and sh (b), of ONBRA and MANTRA. The
black line indicates that the two algorithms require the same amount of samples, gray
line (followed by a red mark) indicates that the algorithm required more than 1TB of

memory to run on that data set with that specific ε value.
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Figure 4.6: Experimental analysis for ε ∈ {0.01, 0.007, 0.005, 0.001}. Comparison
between the allocated memory for pfm (a),and sh (b), of ONBRA and MANTRA. The
black line indicates that the two algorithms require the same amount of memory, gray
line (followed by a red mark) indicates that the algorithm required more than 1TB of

memory to run on that data set with that specific ε value.



Models and Algorithms for Temporal Betweenness Centrality and Dynamic Distributed Data Structures 61

0.01 0.007 0.005 0.001
ε

10−4

10−3

10−2
S

up
re

m
um

D
ev

ia
ti

on
Supremum Deviation for Prefix Foremost

(a)

0.01 0.007 0.005 0.001
ε

10−4

10−3

10−2

S
up

re
m

um
D

ev
ia

ti
on

Supremum Deviation for Shortest

(b)

Figure 4.7: Experimental analysis for ε ∈ {0.01, 0.007, 0.005, 0.001}. Comparison
between the supremum deviation for pfm (a),and sh (b), of MANTRA.
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Figure 4.8: (a) Relation between the running time and the sample size of MANTRA
for the shortest temporal betweenness with ε as in Figure 4.4. (b) Comparison between
MANTRA and the exact algorithm running times for the shortest temporal betweenness

on the biggest temporal networks.



Chapter 5

Expansion and Flooding time on

Dynamic Random Regular

Expanders

In this chapter we propose several dynamic random graphs that are inspired by the

network formation process in the Bitcoin protocol. We run extensive simulations to

measure the “flooding time” in the dynamic graphs, i.e., how long it takes a message

starting at a random node to reach all, or almost all, the nodes.

5.1 Introduction

Bitcoin is a cryptocurrency proposed in 2008 by an unknown person or group of people

under the pseudonym of Satoshi Nakamoto [78]. The system is built using a clever com-

bination of a few classical cryptographic concepts: cryptographic hash functions [79],

digital signature schemes [80], and hash-cash style proof-of-work [81]. Nodes participat-

ing in the Bitcoin system are connected toward an unstructured peer-to-peer network [82]

running on top of the Internet. The first version of the software was released by Satoshi

Nakamoto in January 2009. The most widely used implementation coming from that

initial release, Bitcoin-core [83], is currently under active development. In this chapter

we are concerned with dynamic graph models inspired by the network formation process

of the Bitcoin P2P network. We refer the reader interested in a complete description of

the Bitcoin system to [84, 85].

After an initial bootstrap in which they rely on DNS seeds for node discovery, nodes run-

ning the Bitcoin-core implementation turn to a fully-decentralized policy to regenerate

63
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their neighbors when their degree drops below the configured threshold [86]. Each node

has a “target out-degree value” and a “maximum degree value” (respectively 8 and 125,

in the default configuration) and it locally stores a large list of (ip addresses of) “active”

nodes. Every time the number of current neighbors of a node is below the configured

target value it tries to create new connections with nodes sampled from its list. The

list stored by a node is initially started with nodes received in response to queries to

DNS seeds, then it is periodically advertised to its neighbors and updated with the lists

advertised by the neighbors. Hence, in the long run each node samples its out-neighbors

from a list formed by a “sufficiently random” subset of all the nodes of the network.

While most of the nodes of the network can be easily discovered [87], the existence of

an edge between two nodes is only known by the two endpoints. The topology of the

Bitcoin network is thus hidden by the network formation protocol. Indeed, discovering

the network structure has been recently an active research topic [88, 89].

5.1.1 Our contribution.

RAES (Request a link, then Accept if Enough Space) [90] is a directed random graph

model defined by three parameters n ∈ N, d ∈ {1, . . . , n − 1}, c > 1, in which each one

of n nodes has out-degree exactly d and in-degree at most cd. The random graph is

generated according to the following discrete random process: The graph starts with no

edges, and at every round each node u with out-degree doutu < d picks d − doutu nodes

uniformly at random (u.a.r.) (with repetitions) and, for each such node v, u “requests”

a directed link (u, v); If a node v receives a number of link-requests that would make

its in-degree larger than cd, then v rejects all requests received in the current round,

otherwise v accepts all requests of the round. The process terminates when all nodes

have out-degree d (and in-degree at most cd).

The RAES model can be seen as a simplified version of the network-formation process

implemented in Bitcoin-core [86]. However, it lacks one of the crucial aspects of the

real network: the dynamics, i.e., the fact that nodes can join and leave the network at

any time and edges can be faulty. In this chapter we consider an undirected version of

RAES and we extend the random graph model in two ways, both of them generating

dynamic random graphs that perpetually evolve. We run extensive simulations of both

models to grasp the “stationary” structural properties of the dynamic random graphs

and to measure the time it takes a message generated from one node to reach all (or

almost all) the nodes.

In the first model, edge-dynamic RAES (E-RAES), we add an “edge-evolution” param-

eter p ∈ [0, 1] with the following role: At every round, each accepted edge disappears
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with probability p. A detailed description of this model is presented in Section 5.2.1.

Since the set of nodes of the graph is fixed while the set of edges evolve in discrete

rounds, the dynamic random graph is a sequence {Gt = (V,Et) : t ∈ N} where the

distribution of the edges at round t only depends on the set of edges at round t− 1. In

order to empirically measure when the dynamic random graph can be considered stable,

we compute the sequence of spectral gaps γt of the transition matrices Pt of the snap-

shots Gt of the dynamic graph and we consider that the dynamic graph is in a stable

regime when γt remains in a sufficiently small interval for a sufficiently large window

of consecutive rounds. The spectral gap of the transition matrix is also a measure of

how “well-connected” a graph is and the results of the simulations show that the model

generates, on average, sequences of graphs that are well-connected even with large values

for the edge disappearing rate p. Indeed, even when a large fraction of edges disappear

at any round, one single step of the RAES procedure is typically sufficient to rebuild a

well-connected graph.

In the second model, vertex-dynamic RAES (V-RAES), we add two “node-evolution”

parameters, λ ∈ R+ and q ∈ [0, 1], with the following roles: At every round t, Nλ(t)

new nodes enter the network, where Nλ(t) is a Poisson random variable with rate λ, and

each node leaves the network with probability q, independently of the other nodes. As

soon as a new node joins the network, it starts requesting links to the nodes already in

the network; one round later, i.e., when the presence of the new node has been revealed

to the network, the node also starts receiving incoming link requests from other nodes;

when a node leaves the network, all its incident links disappear. A detailed description

of this model is given in Section 5.2.2. In the V-RAES model the network evolution is

a sequence of random graphs {Gt = (Vt, Et) : t ∈ N} in which both the set of nodes

and the set of edges are random sets at any round. It is easy to see that the expected

number of nodes in the graph converges to λ/q, if we consider it before the node-leaving

step, and to λ(1− q)/q if we consider it after the node-leaving step.

The dissemination protocol in Bitcoin-core is a gossip-based flooding: When a node

receives a valid transaction, it announces it to all its neighbors (see, e.g., https://

en.bitcoin.it/wiki/Network#Standard relaying). As far as we know there are recent

proposals to modify the dissemination mechanism aiming at improving network band-

width usage [91] or limiting de-anonymization attacks [92], but to the best of our

knowledge they have not been implemented in Bitcoin-core so far (see, e.g., https:

//github.com/bitcoin/bips/blob/master/bip-0330.mediawiki). In both our models, E-

RAES and V-RAES, we simulate the flooding process and we measure the flooding time,

i.e., how long it takes a message starting at a random node to reach all (or almost all)

the nodes of the graph.

https://en.bitcoin.it/wiki/Network#Standard_relaying
https://en.bitcoin.it/wiki/Network#Standard_relaying
https://github.com/bitcoin/bips/blob/master/bip-0330.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0330.mediawiki
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For the E-RAES model, the results of the simulations show that the flooding time is

short (i.e., compatible with a logarithmic growth, as a function of the number of nodes),

for every value of the edge-disappearance rate p. For the V-RAES model, the results

of the simulations show that, as long as the fraction of nodes that leave the network at

any round is not too large, e.g., if it stays below 70%, a message starting at a random

node typically quickly reaches nearly all of the nodes.

We also simulate a combination of the two models, in which nodes join and leave the

network as in the V-RAES and edges can be faulty as in the E-RAES. In this chapter we

present the set of results obtained by simulating the models with only a few representa-

tive ranges for parameters d and c that determine the neighborhood size of the nodes:

the smallest possible values for which the underlying graph turns out well-connected

and the default values used in the main Bitcoin implementation. However, we remark

that simulations with different values of d and c exhibit similar qualitative behavior. We

implemented all the models in Python1.

Notice that the topology of the evolving random graphs generated according to our

models is almost surely quite far from the evolving topology of the real Bitcoin network,

since each node of the real network can autonomously decide how many neighbors it

wants to have and how to try to connect to them, and typically nodes choose different

strategies based on their different needs. However, the topology of the evolving random

graphs generated according to our models is probably close to the topology that the

Bitcoin network would have if all full-nodes used the Bitcoin-core implementation with

the default parameters. The study of our models thus allows us to give evidence of

the long-term stability of the network generation process implemented in Bitcoin-core.

This, in turn, gives an indication about the long-term stability of a large part of the real

network without revealing its topology.

As noted in [93], most design decisions implemented at the network layer of permis-

sionless blockchains imply some tradeoffs that typically are not yet well-understood. In

this respect, the results of our simulations suggest that the default values used in the

main Bitcoin implementation that determine the size of the neighborhood of a full-node

could be safely reduced by most of the full-nodes to save network bandwidth without

compromising the stability of the network.

5.1.2 Related work

The topology of the Bitcoin network is hidden by the network formation protocol. How-

ever several approaches in the last decade proved effective in revealing some portion of

1Software available at: https://github.com/Antonio-Cruciani/dynamic-random-graph-generator.

https://github.com/Antonio-Cruciani/dynamic-random-graph-generator
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the network. Miller et al. [94] developed a set of tools and an infrastructure to discover

the public Bitcoin network. Their approach was subsequently made ineffective by an

update in the Bitcoin protocol. Neudecker et al. [89] proposed a timing analysis that is

able to infer the network topology with a sufficient degree of precision. Delgado-Segura

et al. [88] proposed a new approach to reconstruct the network structure and tested it on

the Bitcoin testnet network revealing a network with 733 nodes and 6090 edges, with an

average degree of 16.6 and with most of the nodes having between 7 and 14 neighbors.

As far as we know it has never been tested on the Bitcoin main network.

Peer-to-Peer (P2P) networks received a lot of attention in the last twenty years and

several (static and dynamic) network models have been proposed so far. A random

network model for unstructured P2P networks was introduced and analyzed by Pan-

duragan et al. [95]. Their model was inspired by the Gnutella P2P network and is based

on the existence of a host server that maintains a cache of constant size with addresses

of nodes accepting connections that can be reached at any time by other nodes. In [96]

the authors introduced a class of dynamic graphs called Dynamic Networks with Churn

(in short, DNC ) where both node insertion/deletion and edge evolution are considered.

The authors assume that the dynamic graph consists of a sequence of d-regular expander

graphs; for the purpose of that paper, such an assumption is justified by the results

in [97], where the authors presented a distributed protocol that guarantees the mainte-

nance of a bounded degree topology that, with high probability, contains an expander

subgraph whose set of vertices has size n − o(n), where n is the “stable” network size.

In [98] the authors defined two churn processes: in the first one, at every round a new

node is added to the network while no node leaves it; in the second one, the size of the

vertex set is n and when a new node joins the network the oldest node leaves it. The

authors designed a protocol where each node u starts c ·m independent random walks

(containing the ID-label of the node) until they are picked up by new nodes joining

the network, that connects to the peers that contributed to the tokens. The resultant

dynamic topology is shown to keep diameter O (log n) and to be fault-tolerant against

adversarial deletion of both edges and vertices. The tokens in the graphs must be cir-

culating at each time step in order to ensure that they are well-mixed; this implies that

the rate at which new nodes can join the system is limited, as they must wait while the

existing tokens mix before they can use them. Bagchi et al. [99] studied the number

of adversarial and random faults that an expander graph can tolerate while preserving

approximately the same expansion factor and a linear number of nodes. Becchetti et

al. [90] introduced and analyzed the RAES network formation model, in which after a

logarithmic number of rounds the network evolution terminates in a state in which every

node has a specified out-degree and in-degree upper bounded by a constant. In a recent

work Becchetti et al. [100] introduced and studied a similar model in which nodes can
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also join and leave the network, but the in-degree of the nodes is not upper bounded by

a constant.

Several well known problems have been studied in the context of dynamic networks:

(byzantine) agreement, search and storage, (byzantine) leader election, expander main-

tenance, information spreading, membership management (we refer the reader to [101]

for a survey). For information spreading, early works considered gossip-based broad-

cast algorithms (see, e.g., [102]). However, for privacy oriented P2P networks, such

as the Bitcoin P2P network, some of these algorithms have been shown to expose the

network to privacy vulnerabilities [103] and motivated the design of more sophisticated

information spreading algorithms with low overhead as well as strong resistance to de-

anonymization attacks [91, 92, 104]. Being able to randomly select other peers as new

neighbors to maintain a random-graph like overall structure (low diameter, bounded

degree, etc.) is another critical issue in such networks that has been extensively studied

(see, e.g., [105–107]).

5.2 The models and the problem

A dynamic graph G is a sequence of graphs G = {Gt = (Vt, Et) : t ∈ N} where the sets of
nodes and edges can change at any discrete round. If they change randomly, we call the

corresponding random process a dynamic random graph. In this section we introduce

two dynamic random graph models, that we call Edge-dynamic RAES (E-RAES) and

Vertex-dynamic RAES (V-RAES), that extend the RAES model introduced in [90].

5.2.1 Edge-dynamic RAES (E-RAES)

The E-RAES model is defined by four parameters, n, d, c, and p, where n ∈ N is the

number of nodes, d ∈ N is the minimum target degree, c · d with c ⩾ 1 is the maximum

acceptable degree, and p ∈ [0, 1] is the edge-failure probability. The set of n nodes is

fixed, while the set of edges evolves, at each round, in three steps. In the first step,

each node with less than d neighbors connects with randomly chosen nodes in order to

reach its minimum target degree; in the second step, each node with more than c · d
neighbors, disconnects from randomly chosen neighbors in order to remain within its

maximum acceptable degree; in the third step, each edge disappears with probability p,

independently of the other edges.
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Starting from an arbitrary initial graph G0 = (V,E0).

At each round t ∈ N:

Step 1: For each node u ∈ V , let N1
u be the set of neighbors of u at the beginning of

Step 1. If |N1
u | < d then u samples d−|N1

u | nodes from the set V \N1
u , independently and

u.a.r. with replacement, and connects to them.

Step 2: For each node u ∈ V , let N2
u be the set of neighbors of u at the beginning of

Step 2. If |N2
u | > c·d then u samples |N2

u |−(c·d) neighbors from the set N2
u , independently

and u.a.r. with replacement, and disconnects from them.

Step 3: Each edge {u, v} currently in the graph disappears with probability p, indepen-

dently of the other edges.

The E-RAES model defines a Markov chain with the set of all graphs with n nodes as

state space. It is not difficult to see that the chain is aperiodic and that the empty graph

is a recurrent state (see, e.g., Chapter 1.5 in [108] for some background). Hence, if we

consider the recurrent class containing the empty graph, the Markov chain defined by

the E-RAES model starting at the empty graph will converge to a stationary distribution

π. From a theoretical point of view, it would be interesting to analyze the expansion

properties of the stationary random graph (i.e., a random graph sampled according

to the stationary distribution) and to estimate the mixing time of the Markov chain,

i.e., the time it takes the distribution of the chain starting at the empty graph to get

close to the stationary distribution. However, a theoretical analysis of the mixing time

appears quite challenging due to the complexity of the Markov chain: for example, next

paragraph we observe that the chain is not reversible, thus it not possible to apply the

large body of tools developed for the analysis of reversible chains (see, e.g., [109]). In

Section 5.3 we propose an empirical convergence criterion, we present the results on the

expansion properties of the snapshots of the dynamic graph obtained by simulating the

E-RAES, and the results on the time it takes a message starting at a random node to

reach all the nodes.

E-RAES non-reversibility. A Markov chain {Xt}t with state space Ω and transi-

tion matrix P is reversible if a probability distribution π over Ω exists such that for ev-

ery pair of states x, y ∈ Ω the following detailed balanced equation holds: π(x)P (x, y) =

π(y)P (y, x). The analysis of reversible Markov chains can take advantage of several

mathematical tools (see, e.g., [109]) that typically are not available for non-reversible

chains. In this appendix we observe that the Markov chain defined by the E-RAES

model is non-reversible.
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The E-RAES model defines a Markov chain M where the state space Ω is formed

by all the graphs with n nodes and, for two states/graphs x, y ∈ Ω, P (x, y) is the

probability to reach state y from state x following the three steps of the E-RAES model,

as defined in Section 5.2.1. Observe that, given two arbitrary states x, y ∈ Ω, in general

it is not possible to reach state y starting from state x with a sequence of states x =

z0, z1, . . . , zk = y such that P (zi, zi+1) > 0 for every i = 0, 1, . . . , k − 1. However, if we

restrict the state space to the subset Ω̂ ⊆ Ω of all the states that can be reached starting

from the empty graph G0 = (V, ∅), it is easy to see that the Markov chain restricted

to state space Ω̂ is irreducible and aperiodic (see, e.g., Chapters 1.5-1.7 in [110] for

some background). Hence, there is a unique stationary distribution π̂ over Ω̂ such that,

starting from any state x ∈ Ω̂, P t(x, ·) converges to π̂ as t goes to infinity (see, e.g.,

Theorem 4.9 in [110]).

If, by contradiction, there was a probability distribution π over Ω̂ satisfying the detailed

balanced equation π(x)P (x, y) = π(y)P (y, x), then π would be stationary for P (see,

e.g., Proposition 1.20 in [110]) and, for the uniqueness of the stationary distribution, we

would have π = π̂. Notice that, since π̂ is the stationary distribution of an irreducible

Markov chain with state space Ω̂, then π̂(x) > 0 for every x ∈ Ω̂. However, it is not

difficult to find two states x, y ∈ Ω̂ such that P (x, y) > 0 and P (y, x) = 0. Indeed,

consider two graphs x and y such that in both of them each node has degree between d

and cd, and the set of edges in y is a subset of the set of edges in x. Clearly P (x, y) > 0,

since P (x, y) is at least as large as the probability that exactly all the edges in x that are

not in y disappear during Step 3 of the E-RAES, and P (y, x) = 0, since in y every node

has degree between d and cd thus no new edges are created during Steps 1 and 2 of the

E-RAES model. Hence for such two states it must be 0 < π̂(x)P (x, y) ̸= π̂(y)P (y, x) = 0.

5.2.2 Vertex-dynamic RAES (V-RAES)

The V-RAES model is defined by four parameters, λ, d, c, and q, where λ > 0 is the

arrival rate of new nodes, d and c · d are the minimum target degree and the maximum

acceptable degree as described in the E-RAES model, and q ∈ [0, 1] is the node-leaving

probability. At each round t the graph evolves in four steps. In step zero Nλ(t) new nodes

join the graph, where Nλ(t) is a Poisson random variable with rate λ. In step one, each

node with less than d neighbors (hence, including the Nλ(t) newly arrived ones) connects

with randomly chosen nodes among those that are in the graph at the current round and

were also present in the graph at the previous round (hence, excluding the Nλ(t) newly-

arrived nodes). In step two, each node with more than c · d neighbors, disconnects from

randomly chosen neighbors in order to remain within its maximum acceptable degree.
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In step three, each node u disappears with probability q, independently of the other

nodes (all edges incident to u disappear as well).

Starting from an arbitrary initial graph G0 = (V0, E0).

At each round t ∈ N:

Step 0: Nλ(t) new nodes join the graph, where Nλ(t) is a Poisson random variable

with rate λ.

Step 1: For each node u, let N1
u be the set of neighbors of u at the beginning of

Step 1. If |N1
u | < d then u samples d− |N1

u | nodes from the set (Vt \Nλ(t)) \N1
u ,

independently and u.a.r. with replacement, and connects to them.

Step 2: For each node u, let N2
u be the set of neighbors of u at the beginning of

Step 2. If |N2
u | > c · d then u samples |N2

u | − (c · d) neighbors from the set N2
u ,

independently and u.a.r. with replacement, and disconnects from them.

Step 3: Each node u disappears with probability q, independently of the other

nodes, together with its incident edges.

The size of the vertex set Vt in the V-RAES model converges to λ(1− q)/q, if measured

at the end of the round, and it converges to λ/q if measured at the end of step two of

the round, i.e., before the node-leaving step. Indeed, consider the following informal

argument: Let us name ft the expected number of nodes at round t, then ft = (ft−1 +

λ)(1−q), if computed at the end of the round, since in expectation λ new nodes join the

network at round t and each node in the graph remains in the network with probability

(1 − q). Solving the recurrence with initial condition f0 = 0 gives ft = λ
∑t

i=1(1 −
q)i = λ

(
1− q − (1− q)t+1

)
/q, that converges to λ(1 − q)/q for t that goes to infinity.

More formally, the size of the vertex set is actually a Markovian queue M\G\∞ and it

converges to a Poisson random variable of rate λ/q (see, e.g., [95]). In Section 5.4 we

present the results of the simulations of the V-RAES model.

5.2.3 Preliminaries

Spectral gap. Let G = (V,E) be an undirected graph with no self-loops. The

transition matrix of a simple random walk on G (we will refer to it as the transition

matrix of G) is the |V |×|V |matrix P = D−1A, where A is the adjacency matrix of G and

D is the diagonal matrix whose entries are the degrees of the nodes (for each node u ∈ V ,

D(u, u) is the degree of u in G). It is well-known that P is reversible, all its eigenvalues
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are real and they belong to the interval [−1, 1] and the largest eigenvalue is λ1 = 1.

Moreover, the second largest eigenvalue λ2 < 1 if and only if G is connected. In this

case the spectral gap γ = 1− λ2 is a measure of how quickly the random walk converges

to its stationary distribution (the largest the spectral gap the fastest the convergence

rate). In the following paragraph we recall that the spectral gap is also a measure of

how “well-connected” the underlying graph G is.

Expanders and spectral gaps. A graph G = (V,E) with |V | = n nodes is a (1+δ)-

vertex expander, for some δ > 0, if for every set S of size at most n/2, the neighborhood

N(S) = {v ∈ V : {u, v} ∈ E for some u ∈ S} has size at least (1 + δ)|S|. It is known

that, for a regular graph G, if we define γ = 1 − max{λ2, |λn|}, where λ2 and λn are

respectively the second-largest eigenvalue and the smallest eigenvalue of the transition

matrix P , then the graph G is a (1 + γ)-vertex expander (see e.g. Chapter 4 in [111]).

Thus, larger values of the spectral gap γ of the transition matrix P correspond to better

expansion of the underlying graph G.

Let G = {Gt = (Vt, Et) : t ∈ N} be a dynamic (random) graph. For the purpose of this

paper, we measure how well-connected are the snapshots Gt of the dynamic graph by

computing the spectral gaps of their transition matrices.

Flooding. To measure the time it takes a message sent by a node to reach all (or a

large fraction of) nodes we use the following flooding process. Let G = {Gt = (Vt, Et) :

t ∈ N} be a dynamic random graph. The flooding process over G starting at round t0

from the initiator u0 ∈ Vt0 is the sequence of (random) sets of nodes {It : t ∈ N} such
that: It = ∅ for t < t0; It0 = {u0}; and for t > t0

It = (It−1 ∪N(It−1)) ∩ Vt

where N(It−1) is the set of nodes in Vt−1 \ It−1 that in graph Gt−1 have at least one

neighbor in It−1

N(It−1) = {v ∈ Vt−1 \ It−1 : {u, v} ∈ Et−1 for some u ∈ It−1}

We say that It is the subset of informed nodes at round t. If at some round t all nodes

currently in the network are informed, i.e. It = Vt, we say that the flooding is complete.

The flooding time is the number of rounds between t0 and the first round t such that

It = Vt.
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5.3 E-RAES simulations

In this section, we present the results of the simulations of the E-RAES model. On the

one hand we are interested in the structural properties of the snapshots of the evolving

graphs, on the other hand we want to measure how long it takes a message starting

at one node to reach all the others. To evaluate the structural properties, we use the

spectral gap of the transition matrix; to evaluate the speed of information spreading we

use the flooding time (see Section 5.2.3).

In Section 5.3.1 we define an empirical converge criterion that we will use to decide the

starting round for the simulations computing the average spectral gap of the snapshots

of the evolving graph and the average duration of the flooding process. In Section 5.3.2

we present the results of the simulations for the spectral gap and in Section 5.3.3 those

for the flooding process.

We present only the results for some representative parameters d and c: the minimum

target degree d = 4 is small enough to guarantee that the resulting snapshots of the

evolving graph are quite “sparse”; the value c = 1.5 makes the nodes quite “inflexible”

about their target degree (each node only accepts to have degree 4, 5, or 6). Despite these

strict requirements about the graph structure, our simulations show that the random

process quickly stabilizes on a stationary regime, where the snapshots of the graph are

often very good expanders, even for large values of the edge-failure probability p. We

remark that results qualitatively very similar to those presented for d = 4 and c = 1.5

appear for different values of d and c.

5.3.1 Convergence criterion

We want to study how fast the information spreads from a node to all the other nodes

when the network evolution is stationary. In order to decide the starting round for the

flooding process, we need a criterion to establish when the network evolution reaches

stationarity. In principle, it would be possible to give theoretical bounds on the number

of rounds needed to reach stationarity by analyzing the mixing time of the Markov chain

induced by the E-RAES model; however, as we mentioned in Section 5.2, the analysis

of such a Markov chain appears far from easy. For the purpose of this paper, we use

a heuristic criterion based on the stabilization of the spectral gap. We set an ε > 0

and we declare that the graph stabilizes when the spectral gap remains in a range of

width 2ε for log n consecutive rounds. More formally, at the generic round t ⩾ log n, if

all spectral gaps γt−logn, γ(t−logn)+1, . . . , γt differ from γt for at most ε then we declare

that the dynamic random graph mixed. The choice of ε is dynamically computed by the
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following rule: we simulate a long-run of the evolving graph for 100 rounds and we set

ε as the mean absolute deviation [112] of the non-zero values.

Figure 5.1: The initial evolution of the spectral gap and its stabilization for the
dynamic graph with 215 nodes, d = 4, c = 1.5, and starting from the empty graph. The
spectral gap at each round is computed before the edge-failure step. Each line in the
picture plots one out of one hundred executions. The bold black line plots the average

of the spectral gaps computed at each round, over all the executions.

Figure 5.1 shows a representative sample of the evolution of the spectral gap during the

first rounds of the E-RAES model with n = 215 nodes, d = 4, c = 1.5, and edge-failure

probability p = 0.1, starting from the empty graph. The spectral gap of the snapshots

of the evolving graph is computed before the edge failure step. The picture shows that,

after about 15 rounds, the spectral gap stabilizes with very small oscillations, from round

to round in each execution and with little difference from one execution to another.

5.3.2 Average spectral gap in the long run

To measure the expansion properties of the typical snapshot of the evolving graph,

we simulate the E-RAES model and compute the average of the spectral gaps of the

snapshots. The table and the plot in Figure 5.2 show the results of the simulations for

different values for the number of nodes n and edge-failure probability p. Each number

in the table is the average over 100 runs of 100 rounds each. We computed the spectral

gap both before and after the edge-failure step.
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Average spectral gap

Nodes
p

0.0 0.1 0.3 0.5 0.7 0.9 1.0

1024
B 0.345 0.19 0.208 0.234 0.269 0.317 0.345
A 0.345 0.157 0.0 0.0 0.0 0.0 0.0

2048
B 0.342 0.189 0.206 0.232 0.268 0.315 0.342
A 0.342 0.155 0.0 0.0 0.0 0.0 0.0

4096
B 0.341 0.187 0.204 0.231 0.267 0.314 0.341
A 0.341 0.144 0.0 0.0 0.0 0.0 0.0

8192
B 0.341 0.186 0.204 0.23 0.266 0.313 0.341
A 0.341 0.09 0.0 0.0 0.0 0.0 0.0

16384
B 0.34 0.186 0.203 0.23 0.265 0.313 0.34
A 0.34 0.053 0.0 0.0 0.0 0.0 0.0

32768
B 0.34 0.185 0.203 0.23 0.265 0.313 0.34
A 0.34 0.006 0.0 0.0 0.0 0.0 0.0

Figure 5.2: Average spectral gap for E-RAES of 100 runs of 100 rounds each, for
d = 4, c = 1.5, and increasing values for number of nodes n and edge-failure probability

p. The spectral gap is computed before (B) and after (A) the edge-failure step.

For small values of p, e.g., p = 0.1, the first column of the table in Figure 5.2 shows that

the snapshots are on average connected (the spectral gap is non-zero) even after the

edge failure step. Although the differences between the spectral gaps computed before

and after the edge-failure step, that increases with the number of nodes, indicates that

after the edge-failure step the resulting graph tend to become a much weaker expander,

even when only 10% of the edges disappear on average.

For larger values of p the snapshots of the graph after the edge faults turn out to be

mostly disconnected (spectral gap equals to zero), however the spectral gap computed
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before the edge-failure step indicates that every time the graph becomes disconnected,

just one more step of the RAES process is sufficient to rebuild a connected graph with

good expansion properties.

In Figure 5.2 it is also interesting to notice the unimodal trend of the spectral gap as a

function of the edge-failure probability: it decreases for p from 0 to 0.1 and it increases

for p > 0.1. This indicates that the snapshots of highly-dynamic graphs, in which nodes

are forced to frequently regenerate their neighborhoods, are better expanders than the

snapshots of less dynamic graphs, in which the connections between nodes are more

stable.

5.3.3 Flooding Time Analysis

We here present the results of the simulations of the flooding process (see Section 5.2.3)

on the E-RAES model (see Section 5.2.1). The simulation proceeds as follows: Starting

from the empty graph, we wait for the first round t0 in which the dynamic graph {Gt =

(V,Et) : t ∈ N} meets the criterion defined in Section 5.3.1, then we pick a node u0 ∈ V

uniformly at random, we simulate the flooding process with initiator u0, and we measure

the number of rounds until the flooding is complete.

Figure 5.3: Semi-log-plot of the average flooding time of G(n, 4, 1.5, p) with 29 ≤ n ≤
215, p ≤ 0.9.

Figure 5.3 shows the results of the simulations obtained by setting in the E-RAES model

the parameters d = 4, c = 1.5 and different values for number of nodes n and edge-failure
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probability p. Each point in the plot is the average, over 100 runs, of the number of

rounds required by the flooding process to complete.

The picture quite clearly highlights that the flooding time, as a function of the number

of nodes, is compatible with a logarithmic growth, for every value of the edge-failure

probability p. The value of p seems to determine the multiplicative constant of the

logarithm. We remark that in the simulations the message-passing step of the flooding

process is scheduled after the edge-failure step of the E-RAES model, i.e., when for

values of p larger than 0.1 the snapshot of the graph is typically disconnected. Thus it is

interesting to notice that, even for large value of p, e.g. when 90% of the edges disappear

at each round, the time required to get all nodes informed is quite short. These results

suggest that a new message rapidly “floods” the dynamic network even if every snapshot

of the dynamic graph is completely sparse and disconnected.

5.4 V-RAES simulations

In this section, we present the results of the simulations of the V-RAES model. As for

the structural properties, we recall that (see Section 5.2.2) when new nodes arrive they

can connect to nodes currently in the graph, but they cannot be asked for connections

from other nodes. At each round thus the snapshot of the evolving graph is formed

by a core, i.e., the nodes that were present in the graph in the previous round as well,

and a periphery, i.e., the nodes arrived in the current round, that are connected only to

nodes in the core. Hence, the snapshots of the evolving graph are not good expanders.

Nevertheless, our simulations show that the “flooding time” in the V-RAES model is

fast.

The definition of “flooding time” as described in Section 5.2.3 needs to be appropriately

adapted in the V-RAES model to take into account the fact that new nodes join the

network at any round and thus the process could (and typically does) never reach a state

in which all nodes currently in the network are informed.

As we did for the E-RAES model, we want to start simulating the flooding process

when the network evolution is “stationary”. In Section 5.4.1 we thus define an heuristic

convergence criterion and in Section 5.4.2 we present the results on the flooding process.

We remark that we here present the results only for some representative parameters d

and c, other choices for those parameters produce similar results.
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5.4.1 Convergence criterion

Since in the V-RAES model new nodes arrive at any round with rate λ and each node

leaves the network with probability q, the stationary expected number of nodes in the

network is λ/q and the actual number of nodes is concentrated around its expected

value. We thus consider the network evolution for the V-RAES model to have reached

a stationary regime when the number of nodes in the network is close to λ/q.

Figure 5.4: The evolution of the number of nodes for some sample runs with d = 4,
c = 1.5, and λ/q = 215 and q = 0.05, 0.1, 0.3

Figure 5.4 shows the evolution of the number of nodes in the graph during the first

rounds of the V-RAES, with parameters d = 4 and c = 1.5, starting from the empty

graph. All plots in the picture refer to the ratio λ/q = 215, each plot with a different

value for the node-leaving probability q (and with the corresponding value for λ). The

number of nodes is considered before the node-leaving step.

5.4.2 Flooding Time Analysis

Since nodes join and leave the network at any round, in the V-RAES model a message

sent from an initiator node might not reach neither all the nodes in the graph nor a

large fraction of them. For example, if the initiator node and all its neighbors leave

the network one round after the message departure, then the message will never reach

any of the other nodes. In order to measure the speed of information spreading in the

V-RAES model, we thus run the simulations as follows: Starting from the empty graph,

we wait for the first round t0 in which the dynamic graph {Gt = (Vt, Et) : t ∈ N} meets

the criterion defined in Section 5.4.1, then we pick a node u0 ∈ Vt0 uniformly at random,
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we simulate the flooding process (see Section 5.2) with initiator u0, and we monitor the

fraction of informed nodes αt := |It|/|Vt| at each round.

Figure 5.5: Percentage of the failed flooding executions. Each bar of the histogram
indicates the number of times in which all the informed nodes left the network at the

corresponding round. The ratio λ/q is fixed to 215.

Fig. 5.5 shows the fraction of simulations in which, at some round after t0, all the

informed nodes disappeared simultaneously, thus leaving the network without any in-

formed node. The first observation emerging from the histograms is that all the times

this event happened, it was within five rounds from t0.

For q = 0.9, i.e. when about 90% of the nodes disappear at every round, in about 60% of

the simulations all the informed nodes left at the second round of the flooding process.

On the other hand, for q = 0.5, i.e when about half of the nodes disappear at every

round, the fraction of times in which the message of the initiator node u0 fails to spread

in the network is very small.

In Fig. 5.6 we plot the evolution of the fraction αt of informed nodes, for all the simu-

lations in which the message of the initiator node u0 does spread in the network. The

plots show that, when the set of informed nodes do not disappear during the very first

rounds, the fraction of informed nodes quickly stabilizes over precise values that depend

on the node-leaving probability q: for q ⩽ 0.7 the number of informed nodes reaches a

stationary phase in which almost all the nodes in the network are informed; even for

larger values of the node-leaving probability, e.g., when q = 0.9, in all simulations in

which the informed nodes do not simultaneously disappear within the first five rounds,

the fraction of informed nodes stabilizes around 80%.
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Figure 5.6: Average over 100 runs of the evolution of the fraction of informed nodes
αt, at each time step. In the plots the ratio λ/q is fixed to 215.

Figure 5.7: Semi-log-plot of the average flooding time trend of G(λ, q, 4, 1.5) with
29 ≤ λ/q ≤ 215

As a measure of flooding time in the V-RAES model, we thus can consider the number

of rounds required to reach the stable value αt, as it is determined by the node-leaving

probability q. For example, in Figure 5.7 we plot the number of rounds required by the

flooding process to reach a fraction αt of informed nodes of at least 90%, for all the values

of the node-failure probability q such that the fraction of informed nodes stabilizes above

90%. The picture clearly highlights that such number of rounds is compatible with a

logarithmic growth, as a function of λ/q.
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5.5 EV-RAES and the parameters of the real Bitcoin net-

works

In this section we present a combination of the E-RAES and V-RAES models, that we

call EV-RAES model, in which nodes join and leave the network as in the V-RAES and

edges can be faulty as in the E-RAES. We simulate the flooding process on such a model

first using the same values for d and c that we used in the V-RAES section and then

using the default values of the main implementation of Bitcoin.

Starting from an arbitrary initial graph G0 = (V0, E0).

At each round t ∈ N:

Step 0: Nλ(t) new nodes join the graph, where Nλ(t) is a Poisson random variable

with rate λ.

Step 1: For each node u, let N1
u be the set of neighbors of u at the beginning of

Step 1. If |N1
u | < d then u samples d− |N1

u | nodes from the set (Vt \Nλ(t)) \N1
u ,

independently and u.a.r. with replacement, and connects to them.

Step 2: For each node u, let N2
u be the set of neighbors of u at the beginning of

Step 2. If |N2
u | > c · d then u samples |N2

u | − (c · d) neighbors from the set N2
u ,

independently and u.a.r. with replacement, and disconnects from them.

Step 3: Each edge {u, v} currently in the graph disappears with probability p,

independently of the other edges.

Step 4: Each node u disappears with probability q, independently of the other

nodes, together with its incident edges.

We first observe the impact of the edge failures on the fraction of nodes reached in the

flooding procedure and on the flooding time.

Figure 5.10 shows the results of the simulations on the fraction of informed nodes and

the flooding time for the EV-RAES model, with the same values for d and c used

in Section 5.4 in the simulations of the V-RAES. A comparison of Figure 5.10 with

Figures 5.6 and 5.7 highlights that the impact of the edge failures on the final fraction

of informed nodes and on the flooding time is quite negligible. For example, for node-

leaving probability q up to 0.3, even with edge-disappearance rate p = 0.3 all nodes

receive the message within the same amount of rounds needed when the edges do not

disappear. For larger values of q, e.g. q = 0.5, the fraction of nodes that receive the
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Figure 5.8: Evolution of the fraction of informed nodes αt. The ratio λ/q is fixed to
215.

Figure 5.9: Semi-log-plot of the average flooding time of the EV-RAES with 29 ≤
λ/q ≤ 215, node disappearance rate q = 0.1, 0.3, 0.5, and edge disappearance rate

p = 0.1, 0.3.

Figure 5.10: EV-RAES with d = 4 and c = 1.5, fraction of informed nodes and
flooding time

message turns out smaller for p = 0.3 with respect to the case in which edges do not

disappear. Notice that such large values for q and p are only useful to test the limits of

model, since they generate dynamic networks in which 50% of the nodes join and leave

the network and 30% of the edges disappear at every round. In any realistic scenario,

the fraction of nodes that join and leave the network at any round and the number of
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connections that fail is likely to be much smaller. In those scenarios, our simulations

indicate that all nodes receive the message, within a number of rounds that is compatible

with a logarithmic growth as a function of the number of nodes in the network.

5.5.1 The degree of the full-nodes and network traffic

In the Bitcoin network currently there are approximately 14 · 103 reachable nodes

(see https://bitnodes.io/ for periodic crawls of the Bitcoin P2P Network) and several

hidden ones [113]. In the default configuration of the main implementation, lower and

upper bounds on the number of connections that a full-node can have are set to 8 and

128, respectively. We thus also simulated the EV-RAES model with values for parame-

ters d and c corresponding to the above values of the real Bitcoin P2P Network: namely,

λ/q = 214 and d = 8 and c = 15.625.

On the one hand, a comparison of Figures 5.13 and 5.10 shows that the advantage of

having such a large number of neighbors, i.e. up to 128 in Figure 5.13 as opposed to

up to 6 in Figure 5.10, is limited in terms of fraction of informed nodes and flooding

time. On the other hand, the number of neighbors of a full-node is directly proportional

to the amount of network traffic going through the node. Indeed, “it’s common for

full nodes on high-speed connections to use 200 gigabytes upload or more a month”

(see https://bitcoin.org/en/full-node#minimum-requirements). In order to measure the

impact of the number of neighbors on the network traffic, we installed a Bitcoin-core

full-node, we reduced the default number of connections of the node from 125 to 25 and,

after the completion of the initial block download, we monitored the upload network

traffic observing an average upload traffic between 400 and 500 MB per day, hence less

than 15 GB per month.

https://bitnodes.io/
https://bitcoin.org/en/full-node#minimum-requirements
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Figure 5.11: Evolution of the fraction of informed nodes αt. The ratio λ/q is fixed
to 215.

Figure 5.12: Semi-log-plot of the average flooding time of the EV-RAES with 29 ≤
λ/q ≤ 215, node disappearance rate q = 0.1, 0.3, 0.5, and edge disappearance rate

p = 0.1, 0.3.

Figure 5.13: EV-RAES with d = 8 and c = 15.625: Fraction of informed nodes and
flooding time



Chapter 6

Highly Dynamic and Fully

Distributed Data Structures

In this chapter we study robust and efficient distributed algorithms for building and

maintaining distributed data structures in dynamic Peer-to-Peer (P2P) networks. We

present a novel algorithm that builds and maintains with high probability a skip list

for poly(n) rounds despite O(n/ log n) churn per round (n is the stable network size).

We assume that the churn is controlled by an oblivious adversary (that has complete

knowledge and control of what nodes join and leave and at what time and has unlimited

computational power, but is oblivious to the random choices made by the algorithm).

Moreover, the maintenance overhead is proportional to the churn rate. Furthermore, the

algorithm is scalable in the sense that the messages are small (i.e., at most polylog(n)

bits) and every node sends and receives at most polylog(n) messages per round. Our

algorithm crucially relies on novel distributed and parallel algorithms to merge two n-

elements skip lists and delete a large subset of items, both in O(log n) rounds with high

probability. These procedures may be of independent interest due to their elegance and

potential applicability in other contexts in distributed data structures.

6.1 Introduction

Peer-to-peer (P2P) computing is emerging as one of the key networking technologies in

recent years with many application systems. These have been used to provide distributed

resource sharing, storage, messaging, and content streaming, e.g., Gnutella [114], Skype [115],

BitTorrent [116], ClashPlan [117], Symform [118], and Signal [119]. P2P networks are

intrinsically highly dynamic networks characterized by a high degree of node churn i.e.,

nodes continuously joining and leaving the network. Connections (edges) may be added

85
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or deleted at any time and thus the topology abruptly changes. Moreover, empirical

measurements of real-world P2P networks [120–123] show that the churn rate is very

high: nearly 50% of the peers in real-world networks are replaced within an hour. In-

terestingly, despite a large churn rate, these measurements show that the size of the

network remains relatively stable.

P2P networks and algorithms have been proposed for a wide variety of tasks such as

data storage and retrieval [124–127], collaborative filtering [128], spam detection [129],

data mining [130], worm detection and suppression [131, 132], privacy protection of

archived data [133], and for cloud computing services [118, 134]. Several works pro-

posed efficient implementations of distributed data structures with low maintenance

time (searching, inserting, and deleting elements) and congestion. These include differ-

ent versions of distributed hash tables (DHT) like CAN [135], Chord [136], Pastry [125],

and Tapestry [137]. Such distributed data structures have good load-balancing proper-

ties but offer no control over where the data is stored. Also, these show partial resilience

to node failures.

To deal with more structured data in P2P networks several distributed data structures

have been developed such as Skip Graphs (Aspnes and Shah [7]), SkipNets (Harvey et

al., [8]), Rainbow Skip graphs (Goodrich et al., [9]), and Skip+ (Jacob et al., [10]). They

have been formally shown to be resilient to a limited number of faults (or equivalently

small amounts of churn). However, none of these data structures have theoretical guar-

antees of being able to work in a dynamic network with a very high adversarial churn

rate, which can be as much as near-linear (in the network size) per round. This can be

seen as a major bottleneck in the implementation and use of data structures for P2P

systems. Furthermore, several works deal with the problem of the maintenance of a spe-

cific graph topology [11–14], solve the agreement problem [15], elect a leader [16], and

storage and search of data [17] under adversarial churn. Unfortunately, these structures

are not conducive for efficient searching and querying.

In this chapter, we take a step towards designing provably robust and scalable distributed

data structures and concomitant algorithms for large-scale dynamic P2P networks. More

precisely, we focus on the fundamental problem of maintaining a distributed skip list

data structure in P2P networks. Many distributed implementations of data structures

inspired by skip lists have been proposed to deal with nodes leaving and joining the

network. Unfortunately, a common major drawback among all these approaches is the

lack of provable resilience against heavy churn. The problem is especially challenging

since the goal is to guarantee that, under a high churn rate, the data structure must

(i) be able to preserve its overall structure (ii) quickly update the structure after inser-

tions/deletions, and (iii) correctly answer queries. In such a highly dynamic setting, it
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is non-trivial to even guarantee that a query can “go through” the skip list, the churn

can simply remove a large fraction of nodes in just one time-step and stop or block the

query. On the other hand, it is prohibitively expensive to rebuild the data structure

from scratch whenever large number of nodes leave and a new set of nodes join. Thus

we are faced with the additional challenge of ensuring that the maintenance overhead is

proportional to the number of nodes that leave/join. In a nutshell, our goal is to design

and implement distributed data structures that are resilient to heavy adversarial churn

without compromising simplicity or scalability.

6.1.1 Model: Dynamic Networks with Churn

Before we formally state our main result, we discuss our dynamic network with churn

(DNC) model, which is used in previous works to model peer-to-peer networks in which

nodes can be added and deleted at each round by an adversary (see e.g. [11, 96]).

We consider a synchronous dynamic network controlled by an oblivious adversary, i.e.,

the adversary does not know the random choices made by the nodes. The adversary fixes

a dynamically changing sequence of sets of network nodes V = (V0, V1, V2, . . . , Vt, . . . )

where Vt ⊂ U , for some universe of nodes U and t ≥ 1, denotes the set of nodes present

in the network during round t. A node u such that u ∈ Vt and u /∈ Vt+1 is said to

be leaving at time t + 1. Similarly, a node v /∈ Vt and v ∈ Vt+1 is said to be joining

the network at time t + 1. Each node has a unique ID and we simply use the same

notation (say, u) to denote both the node as well as its ID. The lifetime of a node u is

(adversarially chosen to be) a pair (su, tu), where su refers to its start time and tu refers

to its termination time. The size of the vertex set is assumed to be stable |Vt| = n for

all t; this assumption can be relaxed to consider a network that can shrink and grow

arbitrarily as discussed in Section 6.2.1. Each node in U is assumed to have a unique

ID chosen from an ID space of size polynomial in n. Moreover, for the first B = β log n

rounds (for a sufficiently large constant β > 0), called the bootstrap phase, the adversary

is silent, i.e., there is no churn, more precisely, V0 = V1 = · · · = VB. We can think of the

bootstrap phase as an initial period of stability during which the protocol prepares itself

for a harsher form of dynamism. Subsequently, the network is said to be in maintenance

phase during which V can experience churn in the sense that a large number of nodes

might join and leave dynamically at each time step.

Communication is via message passing. Nodes can send messages of size O(log n) bits

to each other if they know their IDs, but no more than O(polylog(n)) incoming and

outgoing messages are allowed at each node per round. Furthermore, nodes can create

and delete edges over which messages can be sent/received. This facilitates the creation
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of structured communication networks. A bidirectional edge e = (u, v) is formed when

one of the end points u sends v an invitation message followed by an acceptance message

from v. The edge e can be deleted when either u or v sends a delete message. Of course,

e will be deleted if either u or v leaves the network.

During the maintenance phase, the adversary can apply a churn up to O(n/ log n) nodes
per round. More precisely, for all t ≥ B, |Vt \ Vt+1| = |Vt+1 \ Vt| ∈ O(n/ log n) and the

adversary is only required to ensure that any new node that joins the network must be

connected to a distinct pre-existing node in the network; this is to avoid too many nodes

being attached to the same node, thereby causing congestion issues.

Each node can store data items. We wish to maintain them in the form of a suitable

dynamic and distributed data structure. For simplicity in exposition, we assume that

each node u has one data item which is also its ID. This coupling of the node, its ID,

and its data allows us to refer to them interchangeably as either node u or data item u.

In Section 6.2.8, we will discuss how this coupling assumption can be relaxed to allow a

node to contain multiple disparate data items.

6.1.2 Problem Statement

Our primary goal is to build and maintain a data structure of all the items/nodes in the

network. The data structure takes at most I rounds to insert a data item u and at most

R rounds to remove it. I and R are parameters that we would like to minimize. The

distributed data structure should be able to answer membership queries. Specifically,

each query q(x, r, s) is initiated at some source node s in round r and asks whether data

item x is present in the network currently. This implies that node s now wishes to know

if some node in the network has the value x. The query should be answered by round

r + Q where Q is the query time, i.e., the time to respond to queries. If ts > r + Q,

i.e., node s is in the network until round r + Q, it must receive the response. We are

required to give the guarantee that the query will be answered correctly as long as either

(i) there is a node with associated value x whose effective lifetime subsumes the time

range [r, r+Q] (in which case the query must be answered affirmatively) or (ii) there is

no node with value x whose effective lifetime has any overlap with [r, r + Q] (in which

case the query must be answered negatively). In all other cases, we allow queries to be

answered incorrectly.

In addition, all our algorithms must satisfy a dynamic notion of resource-competitiveness [138].

Let T be any interval between two time instants ts and te. We require the work in the

interval T to be proportional (within polylog(n) factors) to the amount of churn ex-

perienced from time ts − O(log n) to te. Formally, define the amount of work Wt as
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the overall number of exchanged messages plus newly formed edges among nodes at

time t. Let W(ts, te) =
∑te

i=ts
Wi and C(ts, te) to be the amount of work and churn

experienced in the interval of time between ts and te, respectively. We require that

W(ts, te) ∈ Õ (C(ts −O(log n), te)) w.h.p. for any interval of time ts, te, where with the

notation Õ(·) we ignore polylog(n) factors (see Figure 6.1). Formally,

Definition 6.1 (Dynamic Resource Competitiveness). An algorithmA is (α, β)-dynamic

resource competitive if for any time instants ts and te such that te > ts, W(ts, te) ∈
O(βC(ts − α, te)).

In this work, whenever we refer to an algorithm as dynamic resource competitive, we

mean that the algorithm is (α, β)-dynamic resource competitive with α = O(log n) and
β = polylog(n).

ts tets − α

Churn Workload

Figure 6.1: Visual representation of the (α, β)-dynamic resource competitive property.
Red area is the experienced Churn over time. While the green area is the workload of
our maintenance algorithm. The workload is proportional up to some β factor of the

Churn between ts − α and te.

6.1.3 Our Contributions

Main Result. We address the problem by presenting a rigorous theoretical frame-

work for the construction and maintenance of distributed skip lists in highly dynamic

distributed systems that can experience heavy churn.

Any query to a data structure will require some response time, which we naturally wish

to minimize. Furthermore, queries will be imprecise to some extent if the data structure

is dynamic. To see why, consider a membership query of the form “is node u in the
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dynamic skip list?” initiated in some round r asking if a node u is in the network or not.

Consider a situation where u is far away from the node at which the query was initiated.

Suppose u is then churned out shortly thereafter. Although u was present at round r,

it may or may not be gone when the query procedure reached u. Such ambivalences are

inevitable, but we wish to limit them. Thus, we define an efficiency parameter Q such

that (i) queries raised at round r are answered by round r + Q and (ii) response must

be correct in the sense that it must be “Yes” (resp., “No”) if u was present (resp., not

present) from round r to r+Q. If u was only present for a portion of the time between

r and r + Q, then either of the two answers is acceptable. Quite naturally, we wish to

minimize Q and for our dynamic data structure, we show that Q ∈ O(log n).

Our algorithms ensure that the resilient skip list is maintained effectively for at least

poly(n) rounds with high probability (i.e., with probability 1−1/nΩ(1)) even under high

adversarial churn. Moreover, the overall communication and computation cost incurred

by our algorithms is proportional (up to polylog(n) factors) to the churn rate, and every

node sends and receives at most O(polylog(n)) messages per round. In particular, we

present the following results (the in-depth descriptions are given in Section 6.2):

1. A novel algorithm that constructs and maintains a skip list in a dynamic P2P

network with an adversarial churn rate up to O(n/ log n) per round.

2. A novel distributed and parallel algorithm to merge a skip list B with a base

skip list C in logarithmic time, logarithmic number of messages at every round

and an overall amount of work proportional to the size of B, i.e., to the skip

list that must be merged with the base one. While this merge procedure serves

as a crucial subroutine in our maintenance procedure, we believe that it is also

of independent interest and could potentially find application in other contexts as

well. For example, it could be used to speed up the insertion of a batch of elements

in skip list-like data structures. Similarly, we designed an efficient distributed and

parallel algorithm to delete a batch of elements from a skip list in logarithmic time

with overhead proportional to the size of the batch.

3. A general framework that we illustrate using skip lists, but can serve as a building

block for other complex distributed data structures in highly dynamic networks

(see Section 6.2.7 for more details).

To the best of our knowledge, our approach is novel and fully-distributed skip list data

structure that works under highly dynamic settings (high churn rates per step). Fur-

thermore, all the proposed algorithms are localized, easy to implement and scalable.

Our major contribution can be summarized in the following theorem.
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Theorem 6.2 (Main Theorem). Given a dynamic set of peers initially connected in some

suitable manner (e.g., as a single path) that is stable for an initial period of O(log n)
rounds (i.e., the so-called bootstrap phase) and subsequently experiencing heavy adver-

sarial churn at a churn rate of up to O(n/ log n) nodes joining/leaving per round, we

• provide an O(log n) round algorithm to construct a resilient skip list that can with-

stand heavy adversarial churn at a churn rate of up to O(n/ log n) nodes join-

ing/leaving per round,

• describe a fully distributed algorithm that maintains the resilient skip list with every

new node inserted into the data structure in O(log n) rounds such that membership

queries can be answered with efficiency parameter Q ∈ O(log n).

All nodes send and receive at most O(polylog(n)) messages per round, each comprising at

most O(polylog(n)) bits. Moreover, our algorithms are dynamically resource competitive

according to Definition 6.1. The maintenance protocol ensures that the resilient skip list

is maintained effectively for at least poly(n) rounds with high probability.

Implications. A consequence of our maintenance algorithm is that it opens up op-

portunities for more general distributed computation in the DNC model. In fact, this

thesis formally shows how to build and maintain a non-trivial data structure under such

a high dynamic settings. We now informally discuss several ideas that illustrate how

our framework can be generalized. Of course, significant followup work is required to

formally prove our claims. We believe this can be extended to maintaining any pointer-

based data structure. In particular, we believe we can maintain an arbitrary graph over

the DNC and solve a wide range of fundamental distributed graph computation tasks

in the DNC model that, until now, seemed implausible.

Our current approach assumes data items are embedded into the nodes. It might be

more feasible to consider the overlay network and the graph structure as two separate

entities. This will allow us to retain the graph structure even when nodes in the overlay

network are deleted by the adversary.

As an example of graph maintenance we briefly discuss how to build and maintain a

(constant-degree) expander graph from an arbitrary connected graph. We will outline

how this can be accomplished using an O(log n) rounds maintenance cycle, which is a

consequence of this work and prior works. First, during the bootstrap phase, we build

our overlay maintenance network in which each node u has access to a set of well-mixed

node IDs1. Once such a network has been built, the bootstrap phase continues with

1Sampling from a set of well-mixed tokens is equivalent to sampling uniformly at random from the
set {1, . . . , n}.
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the constant degree expander construction. Such a task can be accomplished using

(for example) the Request a link, then Accept if Enough Space (RAES) protocol by

Becchetti et al., [6] with parameters d ≥ 1 and c ≥ 2. This technique builds a constant

degree expander (in which all the nodes have degrees between d and c · d) in O(log n)
rounds and using overall O(n) messages w.h.p. Once the constant degree expander is

constructed, the bootstrap phase ends and the adversary begins to exert its destructive

power on the overlay network. Using our data structure maintenance protocol in parallel

with the expander maintenance by Augustine et al., [11] we can maintain a constant

degree expander using O(log n) rounds maintenance cycles in which each node sends

and receives O(polylog(n)) messages at each round.

The minimum spanning tree (MST) problem can be solved efficiently in the DNC model.

In the MST problem we are given an arbitrary connected undirected graph G with

edge weights, and the goal is to find the MST of G. This can be accomplished using a

polylog(n) rounds bootstrap phase and maintenance cycles. During the bootstrap phase,

we build the overlay churn resilient network in which each node has access to a set of

well-mixed tokens and we build a constant-degree expanderH overlay on the given graph

G (the expander edges are added to G’s edge set). For this, we convert the expander

(that is not addressable) into a butterfly network (that is addressable) which allows

for efficient routing between any two nodes in O(log n) rounds. This conversion can

be accomplished using techniques of [14, 139–142]. All these protocols takes polylog(n)

rounds and Õ(n) messages to convert a constant-degree expander into an hypercubic

(i.e., butterfly) network. Using the addressable butterfly on top of G, we can efficiently

implement the Gallagher-Humblet-Spira (GHS) algorithm [143] as shown by Chatterjee

et al. [144] to compute the MST of G in polylog(n) rounds and Õ(n) messages using

routing algorithms for hypercubic networks [145, 146]. After the bootstrap phase, we

maintain (and update) the MST using our data structure maintenance protocol, the

expander maintenance technique described above, and the MST computation techniques

used in the bootstrap phase.

Another implication is the construction and maintenance of other more sophisticated

data structures like skip graphs and its ilk [7, 9, 10]. All these data structures are not

resilient to churns, and their maintenance protocols are not fast enough to recover the

data structure after the failure of some nodes. Indeed, these protocols (see [7, 9, 10])

might need O(n) rounds to rebuild the skip-graph and they strictly require no addi-

tional churn to be able to fix the data structure. Our maintenance protocol overcomes

these problems and provides a O(log n) rounds skip graph constructing protocol and a

technique able to repair them in O(log n) in the presence of an almost linear churn of

O(n/ log n) at every round. Moreover, our maintenance mechanism allows for the users

to query the data structure while being maintained.
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Finally, some ideas from our results could be used in the centralized batch parallel setting

to quickly insert batches of new elements in skip lists (or skip graphs) data structures

(see e.g.,[147]) and in the fully dynamic graph algorithms settings (see for example the

survey [148]) to perform fast updates of fully dynamic data structures.

High-level Overview and Technical Contributions. Our maintenance protocol

(Section 6.2) uses a combination of several techniques in a non-trivial way to construct

and maintain a churn resilient data structure in polylog(n) messages per round and

O(log n) rounds.

Our network maintenance protocol is conceptually simple and maintains two networks–

the overlay network of peers (called Spartan in Section 6.2) and the distributed data

structure in which these peers can store data structure information. To ease the descrip-

tion of our distributed algorithm, we think of the overlay and the data structure as two

different networks of degree O(log n). With each peer being a part of both, the overlay

and the data structure (see Figure 6.2). This way, we can think of our maintenance

protocol as a collection of distributed protocols that are running in parallel and are in

charge of healing and maintaining these different networks.

Overlay network

Data structure

Figure 6.2: High-
level overview.

The overlay network maintenance protocol is conceptually

similar to the ones in [14, 142]. It consists of several phases

in which we ensure that the overlay network is robust to an

almost linear adversarial churn of O(n/ log n) nodes at each
round. Furthermore, the data structure maintenance proto-

col consists of a continuous maintenance cycle in which we

quickly perform updates on the distributed data structure

despite the high adversarial churn rate. While for maintain-

ing the overlay network we can use the maintenance protocol

in [14] as a black-box, we need to design novel algorithms

to maintain the dynamic data structure.

Already existing techniques for skip lists [7, 9, 10, 149]

or solving the storage and search problem in the DNC

model [17, 150] can neither be used nor adapted for our

purpose. We need to design novel fast distributed and par-

allel update protocols that are resilient to high churn rate without compromising the

integrity of the data structure.

Before delving into the protocol’s description, we highlight one of the key ideas of our

paper. As previously mentioned, the network comprises two networks – the overlay and
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the distributed data structure. However, instead of having only one network for the

current skip list data structure we keep three: the first one is a live network on which

queries are executed, the second one is a clean version of the live network on which

we perform updates after every churn and the latter, is an additional temporary buffer

network on which we store the newly added elements. Such a buffer will be promptly

merged to the clean network during each cycle. Such a three-network architecture allows

us to describe the maintenance process in a clear and simple way. (Note that the nodes

are not actually replicated into multiple copies for each of the networks. The same set

of nodes will maintain all the networks logically.)

Another key aspect of our protocol is that when the oblivious adversary removes some

nodes from the overlay network (thus from the data structures as well), we have that (1)

the overlay network maintenance protocol in [14] ensures that it will remain connected

with high probability at every round and (2) all the elements that disappeared from the

data structures will be temporarily replaced by some surviving group of nodes in the

overlay network. Moreover, when (2) happens, all these replacement nodes, in addition

to answering their own queries, they also answer the ones addressed to the nodes they

are covering for. This is possible since we can always assume some level of redundancy in

the overlay network. For example, we can assume that a node u in the overlay network

has an updated copy of all its neighbors’ values and pointers in the data structure.

(Recall that both network are designed to be low-degree networks).

We now describe a cycle of our maintenance protocol which consists of four major phases.

Moreover, we can assume that at the beginning of the cycle, live and clean networks

contain the same elements. Next, assume that the adversary replaced O(n/ log n) from
the network, this means that O(n/ log n) nodes have been removed from the networks

(overlay, live and clean) and new O(n/ log n) have been added to the overlay network.

After such a churn, there are some (old) nodes in the overlay network covering for the

removed ones in both clean and live networks.

In the first phase, we quickly remove from the clean network those nodes that have been

covered by other surviving nodes in the overlay network. In Section 6.2.3, we provide

an O(log n) rounds protocol that successfully polish the clean network.

In the second phase, all the newly added elements are gathered together, sorted and

used to create a new temporary skip list, i.e., the buffer network. It is non-trivial to

accomplish this under the DNC model in O(log n) rounds. The first major step in this

phase is to efficiently create a sorted list of the newly added elements. To this end we

show a technique that first builds a specific type of sorting network [151], creates the

sorted list, and, from that, builds the skip list in O(log n) rounds. This contribution,



Models and Algorithms for Temporal Betweenness Centrality and Dynamic Distributed Data Structures 95

that can be of independent interest, shows how one can use sorting networks [151, 152]

to efficiently build a skip list despite a high adversarial churn (Section 6.2.4).

In the third phase, the buffer network is merged with the clean one. To this end, we

propose a novel distributed and parallel algorithm to merge two skip lists together in

O(log n) rounds. Intuitively, the merge protocol can be viewed as a top-down wave

of buffer network nodes that is traversing the clean network. Once the wave has fully

swept through the clean network, we obtain the merged skip list. All prior protocols for

merging skip lists (or skip graphs) took at least O(k · log n) rounds to merge together

two skip lists, where k is the buffer size. In our case the buffer is of size k = O(n/ log n)
thus these algorithms would require O(n) rounds to perform such a merge. This is the

first distributed and parallel algorithm that merges a skip list of n elements into another

one in O(log n) rounds. This contribution is of independent interest, we believe that

the merge procedure will play a key role in extending our work to more general data

structures.

In the fourth and last phase, we update the live network with the clean one by running a

O(1) round protocol that applies a local rule on each node in the live and clean network

(Section 6.2.6).

The above maintenance cycle maintains the distributed data structure with probability

at least 1 − 1
nc for some arbitrarily big constant c ≥ 1. This implies that the expected

number of cycles we have to wait before getting the first failure is nc and that the

probability that our protocol correctly maintains the data structure for some r < c

rounds is at least 1− 1
n .

Finally, we show how to extend our maintenance cycle to skip graphs-like data structures

(Section 6.2.7) and that our technique can be easily generalized to handle cases in which

each node in the overlay network possesses more than one element in the data structure

(Section 6.2.8).

6.1.4 Related Works

There has been a significant prior work in designing peer-to-peer (P2P) networks that

can be efficiently maintained (e.g. see [7, 125, 153–157]). A standard approach to

design a distributed data structure that is provably robust to a large number of faults

is to define an underlying network with good structural properties (e.g., expansion, low

diameter, etc.) and efficient distributed algorithms able to quickly restore the network

and data structure after a certain amount of nodes or edges have been adversarially (or

randomly) removed (e.g., see [158–161]). Most prior works develop algorithms that will
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work under the assumption that the network will eventually stabilize and stop changing

or that an overall (somehow) limited amount of faults can occur.

Distributed Hash Tables (DHTs) (see for example [136, 137, 162–166]) are perhaps the

most common distributed data structures used in P2P networks. A DHT scheme [167]

creates a fully decentralized index that maps data items to peers and allows a peer to

search for an item efficiently without performing flooding. Although DHT schemes have

excellent congestion properties, these structures do not allow for non-trivial queries on

ordered data such as nearest-neighbor searching, string prefix searching, or range queries.

To this end, Pugh [149] in the 90’s introduced the skip list, a randomized balanced tree

data structure that allows for quickly searching ordered data in a network. Skip lists

have been extensively studied [168–171] and used to speed up computation in centralized,

(batch) parallel and distributed settings [147, 172–178]. However, classical skip lists

especially when implemented on a distributed system do not deal with the chance of

having failures due to peers (elements) abruptly leaving the network (a common feature

in P2P networks).

With the intent of overcoming such a problem, Aspnes and Shah [7] presented a dis-

tributed data structure, called a skip graph for searching ordered data in a P2P network,

based on the skip list data structure [149]. Surprisingly, in the same year, Harvey et

al. [8] independently presented a similar data structure, which they called SkipNet. Sub-

sequently, Aspnes and Wieder [179] showed that skip graphs have Ω(1) expansion with

high probability (w.h.p.). Although skip graphs enjoy such resilience property, the only

way to fix the distributed data structure after some faults is either (i) use a repair mech-

anism that works only in the absence of new failures in the network and has a linear

worst-case running time2 [7] or (ii) rebuild the skip graph from scratch. Goodrich et

al. [9] proposed the rainbow skip graph, an augmented skip graph that enjoys lower con-

gestion than the skip graph. Moreover, the data structure came with a periodic failure

recovery mechanism that can restore the distributed data structure even if each node

fails independently with constant probability. More precisely, if k nodes have randomly

failed, their repair mechanism uses O(min(n, k log n)) messages over O(log2 n) rounds

of message passing to adjust the distributed data structure. In the spirit of dealing with

an efficient repairing mechanism, Jacob el at. [10] introduced SKIP+, a self-stabilizing

protocol3 that converges to an augmented skip graph structure4 in O(log2 n) rounds

w.h.p., for any given initial graph configuration in which the nodes are weakly con-

nected. The protocol works under the assumption that starting from the initial graph

until the convergence to the target topology, no external topological changes happen to

2In the size of the skip graph.
3We refer to [180] for an in-depth description of self-stabilizing algorithms.
4It is augmented in the sense that it can be checked locally for the correct structure.
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the network. Moreover, once the desired configuration is reached, SKIP+can handle a

single join or leave event (i.e., a new node connects to an arbitrary node in the system

or a node leaves without prior notice) with a polylogarithmic number of rounds and

messages. While it is shown that these data structures can tolerate node failures, there

is no clarity on how to handle persistent churn wherein nodes can continuously join and

leave, which is an inherent feature of P2P networks. Moreover, all the proposed repair-

ing mechanisms [7, 9, 10, 179] will not work in a highly dynamic setting with large,

continuous, adversarial churn (controlled by a powerful adversary that has full control

of the network topology, including full knowledge and control of what nodes join and

leave and at what time and has unlimited computational power).

6.2 Solution Architecture

Before delving into the description of our maintenance algorithm, we briefly introduce

some notation used in what follows.

Let us briefly recall skip lists [149], that are randomized data structures organized as a

tower of increasingly sparse linked lists. Level 0 of a skip list is a classical linked list of

all nodes in increasing order by key/ID. For each i such that i > 0, each node in level

i− 1 appears in level i independently with some fixed probability p. The top lists act as

“express lanes” that allow the sequence of nodes to be quickly traversed. Searching for

a node with a particular key involves searching first in the highest level, and repeatedly

dropping down a level whenever it becomes clear that the node is not in the current

one. By backtracking on the search path it is possible to shows that no more than 1
1−p

nodes are searched on average per level, giving an average search time of O(log n) (see
Appendix C.1 for useful properties of randomized skip lists). We refer to the height

of a skip list L (see Figure 6.3) as the maximum h such that Level h is not empty.

Given a node v in the skip list L with nL elements, we use N
(R,ℓ)
L (v) and N

(L,ℓ)
L (v) to

indicate v’s right and left neighbors at level ℓ respectively. Moreover, when the direction

and the levels are not specified we refer to the overall set of neighbors of a node in

a skip list, formally we refer to NL(v) =
⋃

ℓ≥0(N
(L,ℓ)
L (v) ∪ N

(R,ℓ)
L (v)). Furthermore,

we define ℓLmax(v) for a node v ∈ L to be its maximum height in the skip list5 and

ℓmax(L) = maxv∈L ℓLmax(v) to be the overall height of the skip list.

Our dynamic distributed skip list data structure is architected using multiple “networks”

(see Figure 6.4). Each peer node can participate in more than one network and in some

cases more than one location within the same network. We use the following network

structures.

5We omit the superscript when the skip list is clear from the context.
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Figure 6.3: Skip list with n = 6 nodes and 3 levels.

The Spartan Network S is a wrapped butterfly network that contains all the current

nodes. This network can handle heavy churn of up to O(n/ log n) nodes joining

and leaving in every round [14]. However, this network is not capable of handling

search queries.

Live Network L is the skip list network on which all queries are executed. Some of

the nodes in this network may have left. We require such nodes to be temporarily

represented by their replacement nodes (from their respective neighbors in S).

Buffer Network B is a skip list network on which we maintain all new nodes that

joined recently.

Clean Network C is a skip list network that seeks to maintain an updated version of

the data structure that includes the nodes in the system.

C

L

B

Creation

Merge

Update

D
elete

S

Committee

0 1 0

0

1

2

3

Figure 6.4: Schematic representation of the architecture and the Maintenance cycle
described in Algorithm 4. Colored nodes in L and C are nodes that have been removed
by the adversary and that are being covered by some committee of nodes (of the same

color) in S.

Moreover, in all skip lists, when a node exits the system, it is operated by a selected group

of nodes. In the course of our algorithm description, if a node u is required to perform

some operation, but is no longer in the system, then its replacement node(s) will perform

that operation on its behalf. Note further that some of the replacement nodes themselves
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may need to be replaced. Such replacement nodes will continue to represent u. The

protocol assumes a short (Θ(log n) round) initial “bootstrap” phase, where there is no

churn6 and it initializes the underlying network. More precisely, the bootstrap is divided

in two sub-phases in which we (i) build the underlying churn resilient network described

in Section 6.2.1 in O(log n) rounds and, (ii) we build the skip lists data structures L
and C (initially L = C) using the O(log n) rounds technique described in Section 6.2.4;

after this, the adversary is free to exercise its power to add or delete nodes up to the

churn limit and the network will undergo a continuous maintenance process. The overall

maintenance of the dynamic distributed data structure goes through cycles. Each cycle

c ≥ 1 in Algorithm 4 is comprised of four phases. Without loss of generality assume

that initially L and C are the same. We use the notation L(c) (resp. S(c), C(c),B(c)) to

indicate the network L (resp. S, C,B) during the cycle c ∈ N, when it is clear from the

context we omit the superscript to maintain a cleaner exposition.

Algorithm 4: Overview of the distributed skip list maintenance process.

1 Starting from a skip list L(1) = C(1)
2 foreach Cycle c ≥ 1 do

3 Phase 1 (Deletion): All the replacement nodes in C(c) are removed. Note that

nodes that leave the system during the replacement process may remain in C(c).
4 Phase 2 (Buffer Creation): All the new nodes that were churned into the

system since Phase 2 of the previous cycle join together to form B(c).
5 Phase 3 (Merge): The buffer B(c) created in Phase 2 is merged into C(c), i.e.,

C(c+1) ← C(c) ∪ B(c).
6 Phase 4 (Update): Update the live network L(c) with the clean network C(c),

i.e., L(c+1) ← C(c+1).

6.2.1 The Spartan network

A useful technique to build and maintain a stable overlay network that is resilient to a

high amount of adversarial churn is to construct and maintain a network of (small-sized)

committees [13, 14, 16, 17]. A committee is a clique of small (Θ(log n)) size composed

of essentially “random” nodes. A committee can be efficiently constructed, and more

importantly, maintained under large churn. Moreover, a committee can be used to

“delegate” nodes to perform any kind of operation. In this work, to build and maintain

our churn-resilient overlay network of committees we make use of the results in [14]. Our

choice is motivated by two main advantages that the Spartan network in [14] has over the

previous approach [13]: (a) it tolerates an abrupt adversarial churn rate of O(n/ log n),
and (b) it can be built in O(log n) rounds with high probability. Each committee is

6Without a bootstrap phase, it is easy to show that the adversary can partition the network into
large pieces, with no chance of forming even a connected graph.
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a dynamic random clique of size Θ(log n) in which member nodes change continuously

with the guarantee that the committee has Θ(log n) nodes as its members at any given

time. These committees are arranged into a wrapped butterfly network [39, 181]. The

wrapped butterfly has 2k rows and k columns such that k2k ∈ O(n/ log n) nodes and

edges. The nodes correspond to committees and are represented by pairs (r, ℓ) where ℓ

is the level or dimension of the committee (0 ≤ ℓ ≤ k) and r is a k-bit binary number

that denotes the row of the committee. Two committees (r, ℓ) and (r′, ℓ′) are linked by

an edge that encodes a complete bipartite graph if and only if ℓ′ = ℓ+1 and either: (1)

both committees are in the same row i.e., r = r′, or (2) r and r′ differ in precisely the

(ℓ + 1(mod k))th bit in their binary representation. Finally, the first and last levels of

such network are merged into a single level. In particular, committee (r, 0) is merged

into committee (r, k). Figure 6.4 shows an example of Spartan network with 4 rows

and 2 columns in which every node of the two-dimensional wrapped butterfly encodes

a committee of Θ(log n) random nodes and each edge between two committees encodes

a complete bipartite graph connecting the vertices among committees. Notice that the

first and last columns are the same set of committees since the butterfly is wrapped. The

Spartan network is built during the bootstrap phase in which the adversary does not

perform any move (having such phase is a common assumption in the DNC model [11,

14–17, 96]). In [14], the authors showed how to efficiently build such wrapped butterfly

of committees in O(log n) rounds using O(log n) messages per node at every round. For

the sake of completeness, we provide a high-level description of how to build Spartan

during the bootstrap phase. As a first step, a random node v is elected as leader.

Subsequently, a O(log n) height binary tree rooted in v is constructed. Next, the in-

order traversal number for each node is computed and a cycle between the first N =

k2k ∈ O(n/ log n) nodes is created. Each node in such a cycle becomes a committee

leader. The cycle is then transformed into a wrapped butterfly network with k columns

and 2k rows. As a next step, the nodes that are not committee leaders randomly

join one of the N committees with the purpose to create committee of Θ(log n) nodes.

Once such committees are created, the nodes within each committee form a clique of

size Θ(log n). Finally, the committee leaders exchange the IDs of the nodes in their

committee with their neighbors so that bipartite overlay edges can be formed between

nodes in neighboring committees.

After the bootstrap phase, the nodes in Spartan run a continuous Θ(log log n) rounds

maintenance cycle in which (1) all the nodes in the network move to another committee

chosen uniformly at random among all the other committees and (2) the newly added

nodes are assigned to random committees. This cycle prevents the powerful adversary

to grasp sensitive information about the network structure and to replace all the nodes

in the network. Augustine and Sivasubramaniam [14] showed that such a maintenance
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cycle makes the Spartan network robust with high probability against an adversarial

churn rate of O(n/ log n), i.e., with high probability no committee is disrupted by the

churn applied by oblivious adversary.

As a side contribution of our work, we generalize the Spartan protocol to handle an

arbitrary number of nodes in the network, i.e., we relax the assumption that the size of

the overlay network is fixed at each round to some number of nodes n. This makes the

protocol adaptable to highly dynamic networks, in which the number of nodes might

suddenly variate. We define a protocol that enlarges and reduces the dimensionality

of S (i.e., reshapes S) when the number of nodes in the Spartan network is such that

the wrapped butterfly increases (resp. decreases) by one dimension. In Appendix C.2,

we provide a reshaping protocol that reconfigures the Spartan network according to the

number of peers present in the overlay network.

6.2.2 Replacing nodes that have been removed by the adversary

We describe how to maintain the live network L and the clean network C when churn

occurs. Let us assume that a node v ∈ V left the network. To preserve C and L
structures, we require its committee in S “to cover” for the disappeared node. In other

words, when a node v leaves the network, its committee members in S will take care of all

the operations involving v in L and C. Doing so, will temporarily preserve the structure

of these networks, as if v was still in the network. Moreover, we assume that at every

round in the Spartan network, all the nodes within the same committee communicate

their states (in S,L, and C) to all the other committee members, i.e., each node u in a

committee knows all its neighbors NS(v), each neighbor in both skip list L and C for

each v ∈ NS(v), and all the committees of its neighbors in L and C7. Furthermore,

when a node v leaves the network, each node in its committee in S will connect to v’s

neighbors in L and C. This can be done in constant time and will increase the degree of

the nodes in the data structures to O(polylog(n)). Notice that each committee in S is

guaranteed to be robust against a O(n/ log n) churn rate, i.e., the probability that there

exists some committee of size o(log n) is at least 1/nd for an arbitrarily large d ≥ 1 (see

Theorem 6 in [182]). This implies that every committee of nodes in S is able to cover for

the removed nodes in L and C with high probability. Figure 6.5 shows an example of how

the committees in the Spartan network cover for its members that were removed by the

adversary. More precisely, in Figure 6.5(b) we show how the orange node’s committee

is covering for it after being dropped by the adversary. An alternative way to see this

7The expected space needed to store the committee’s coordinates of v’ neighbors in L and C is
O(logn) because every node in a skip list has expected degree of O(logn), w.h.p.
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is to assume that the committee creates a temporary virtual red node in place of the

orange one (see Figure 6.5(c)).

Leaves the network

(a)

Committee covers for the orange node

(b)

Virtually representing the red node

(c)

Figure 6.5: In Figure 6.5(a) the orange node gets removed by the adversary from the
overlay network. Figure 6.5(b) shows how all its committee neighbors in the overlay
cover for the orange node. Figure 6.5(c) is an equivalent visualization of Figure 6.5(b),
the committee replaces the orange node with a “virtual” red node. This will temporarily

preserve the skip list structure of Figure 6.5(a).

Lemma 6.3. Replacing node(s) that have been removed by the adversary requires O(1)
number of rounds and work proportional to the churn.

Proof. When a node v leaves the network, all its committee neighbors create an edge

with v neighbors in L and C. This requires O(1) rounds and the amount of edge that are

created by v’s committee isO(log2 n) (at most 4 log n edges for each node in theO(log n)-
sized committee). Observe that in one cycle ofO(log n) rounds we can experience a churn

of O(n/ log n) at every time instant. Thus, the overall work is O(n · polylog(n)) and

respects our dynamic resource competitiveness constraints.

6.2.3 Deletion

We describe how to safely clean the network C in O(log n) rounds from the removed

nodes for which committees in the Spartan network S are temporarily covering for. The

elements in the clean network C before the cleaning procedure can be of two types: (1)

not removed yet and (2) patched-up, i.e., nodes that have been removed by the adversary

and for which another group of nodes in the network is covering for. A trivial approach to

efficiently remove the patched-up nodes from C, would be the one of destroying the clean

network C by removing these nodes and then reconstructing the cleaned skip list from

scratch. However, this approach does not satisfy our dynamic resource competitiveness

constraint (see Definition 6.1 and Section 6.1.3); the effort we must pay to build the skip

list from scratch may be much higher than the adversary’s total cost. Hence, we show an

approach to clean C that guarantees dynamic resource competitiveness. For the sake of

explanation, assume that the patched-up nodes are red and the one that should remain

in C are black. The protocol is executed in all the levels of the skip list in parallel. The



Models and Algorithms for Temporal Betweenness Centrality and Dynamic Distributed Data Structures 103

high-level idea of the protocol is to create a tree rooted in the skip list’s left-topmost

sentinel by backtracking from some “special” leaves located on each level of the skip list.

Once the rooted tree is constructed, another backtracking phase in which we build new

edges connecting black nodes separated by a contiguous list of red nodes for its leaves

is executed. Figure 6.6 shows an example of the delete routine (Algorithm 5) run on all

the levels of the skip list in Figure 6.6(a). Moreover, Figure 6.6(b) and Figure 6.6(c)

show the execution of the delete routine at level 0. First, the tree rooted in the left-

topmost sentinel is built by backtracking from the leaves (i.e., from the black nodes

that have at least one red neighbor). Next, the tree is traversed again in a bottom-up

fashion and green edges between black nodes separated by a list of red nodes are created

(Figure 6.6(d)). Figure 6.6(e) depicts the skip list after after running Algorithm 5 in

parallel on every level. Finally, Figure 6.6(f) shows the polished skip list.

Algorithm 5: Delete routine for level ℓ. See Figure 6.6 for an illustration.

Tree Formation Phase (O(log n) rounds):
1 Let B be the set of black nodes at level ℓ with at least one red neighbor. In this

step, we are required to form the shortest path tree T rooted at the left-topmost
sentinel with B as its leaves. A simple bottom-up approach can be used to build
this tree T in O(log n) rounds.

Message Initialization ((O(1) rounds):
2 Every b ∈ B creates a message containing a pair of items as follows.

1. (ḃ, ḃ) if both its neighbors are red.

2. (ḃ, b) if its left neighbor is red and its right neighbor is black

3. (b, ḃ) if its left neighbor is black and its right neighbor is red

3 Each b then sends its message to its parent in T .

Propagation Phase (O(log n) rounds):
4 This is executed by each node u on the tree T . Node u waits to hear messages from

all its children. If it has only one child, it will propagate the message to its parent
in the tree. Otherwise (i.e., it has two children) it receives two messages: (w, x)
from its child from below and (y, z) from its child from its right. We will show
later that either x and y are both dotted or neither of them are dotted.

5 if both x and y are dotted then
6 Introduce x to y so that they can form an edge between them at level ℓ.

7 Node u then propagates the message (w, z) to its parent on the tree.

Lemma 6.4. Algorithm 5 executed on a skip list at all levels 0 ≤ ℓ ∈ O(log n) correctly
creates an edge between every pair of black nodes that are separated by a set of red nodes

at each level ℓ in O(log n) rounds w.h.p.. Moreover, the total work performed by this

procedure is within a polylog(n) factor of the number of red nodes.
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a b c d e f g h ℓls rsi

(a)

a b c d e f g h ℓls rsi

(b)

a b c d e f g h ℓls rsi

(ℓ̇, ℓ)(h, ḣ)

(h, ℓ)

(ċ, ℓ)

(a, ȧ) (ċ, c)

(c)

a b c d e f g h ℓls rsi

(d)

a b c d e f g h ℓls rsi

(e)

als c d e f g h ℓ rs

(f)

Figure 6.6: Example of the delete phase on a skip list. Red nodes are the one that
must be deleted from the skip list, blue arrow indicates the path towards the left topmost
sentinel in the skip list from the black nodes that wish wire-out its red neighbors.
Figure 6.6(a) is the skip list before the deletion phase. Figure 6.6(b) shows the tree
rooted in the left-topmost sentinel created by the Tree Formation Phase. Figure 6.6(c)
shows the Message Initialization and the Propagation Phase executed at the bottom
most level of the skip list where Blue circles indicate that an edge between two black
nodes have been created. Figure 6.6(d) shows the skip list after the bottom most level
run Algorithm 5. Figure 6.6(e) is the skip list after running Algorithm 5 at all its
levels. Finally, Figure 6.6(f) is the skip list after the deletion phase. The left and right

sentinels are represented as ls and rs, respectively.

Proof. We first establish a simple but useful invariant that holds for all nodes u in T .

Consider a pair (x, y) propagated upwards by a node u to its parent. We note that x

(resp., y) (in its un-dotted form) is the leftmost (resp., rightmost) leaf in the subtree

rooted at u. This can be shown by induction. Clearly the statement is true if u ∈ B

as it creates the message to be of the form (u, u) (either of them possibly dotted). The

inductive step holds for u at higher levels by the manner in which messages from children

are combined at u.

Note that the procedure forms edges between pairs of nodes (b, b′) at some level ℓ only

if they are both in B (corresponding to the execution pertaining to level ℓ). Thus, for

correctness, it suffices to show that the edge is formed if and only if all the nodes between

b and b′ at level ℓ are red.

To establish the forward direction of the bidirectional statement, let us consider the

formation of an edge (b, b′) at some node u that is at a level ℓ′ ≥ ℓ. It coalesced two
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pairs of the form (x, ḃ) and (ḃ′, y). The implication is that b has a right neighbor at

level ℓ that is red and ḃ has a left neighbor at level ℓ that is red. Moreover, they are

the rightmost leaf and left most leaf respectively of the subtrees rooted at u’s children.

Thus, none of the nodes between b and b′ at level ℓ are in T . This implies that they

must all be red nodes.

To establish the reverse direction, let us consider two nodes b and b′ at level ℓ that

are both black with all nodes between them at level ℓ being red. Consider their lowest

common ancestor u in T . Clearly, u must have two children, say, v and w. From the

invariant established earlier, the message sent by v (resp., w) must be of the form (∗, ḃ)
(resp., (ḃ′, ∗)). Thus, u must introduce b and b′, thereby forming the edge between them.

Since T is the shortest path rooted at the left-topmost sentinel, its height is at most

O(log n) w.h.p. Both the tree formation and propagation phases are bottom-up proce-

dures that take time proportional to the height of T . Thus, the total running time is

O(log n).

Finally, each node in T sends at most O(1) messages up to its parent in T . This implies

that the number of messages sent is proportional (within polylog(n) factors) to the

number of leaves in T . Also, all edges added in the tree are between pairs of nodes (b, b′)

in B that are consecutive at level ℓ (i.e., no other node in B lies between b and b′ at

level ℓ). Thus, work efficiency is established.

6.2.4 Buffer Creation

In this section, we outline the process of constructing the Buffer network B, which

comprises the nodes that have joined the network. Conceptually, to establish a skip list

from an unsorted collection of distinct elements, the initial step involves creating the

lowest level by organizing a sorted list. Subsequently, for each node in this list, a random

experiment is conducted to construct the upper levels. In our context, we encounter

an unsorted set of nodes C, which have been introduced into the Spartan network S
through adversarial churn, and our objective is to construct a distributed skip list from

it. Initially, our challenge lies in efficiently arranging these nodes to form the lowest

level of the distributed data structure. The current best-known approach to sort n

elements using polylog(n) incoming and outgoing messages for each node during each

round requires O(log3 n) time [183]. To improve on such result, we rely on sorting

networks theory (e.g. [151, 152, 181]). A sorting network is a graph topology which is

carefully manufactured for sorting. More precisely, it can be viewed as a circuit-looking

DAG (directed acyclic graph) with n inputs and n outputs in which each node has

exactly two inputs and two outputs (i.e., two incoming edges and two outgoing edges).
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A sorting network is such that for any input, the output is monotonically sorted. A

sorting network is characterized by two parameters: the number of nodes resp. size and

the depth. The space required to store a sorting network is determined by its size while

the overall running time of the sorting algorithm is determined by its depth. Figure 6.7

shows an example of sorting network on 4 elements. One notable construction for sorting
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min{3, 4} max{3, 4}

min{1, 2} max{1, 2}

(a)

min{1, 3} max{1, 3}
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Sorting Completed
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Figure 6.7: Example of a sorting network [152] on 4 numbers. Every crossing edge
connecting two nodes in different levels is a node in the DAG representation. The upper
output of a crossing edge connecting two nodes in different levels is the minimum
between the two inputs, while the lower output is the maximum. Execution of the

sorting network is left to right.

n elements is the O(log n)-depth (thusO(n log n) size) AKS network, developed by Ajtai,

Komlós, and Szemerédi [151] in the early 80’s. However, a drawback of the AKS network

is that the O(·) notation hides large constant factors. Some progress has been made in

simplifying the AKS network and improving the constant factors in its depth [184], but

for practical values of n, the depth of Batcher’s bitonic sort [152] remains considerably

smaller. Nevertheless, if we disregard the impracticability of the AKS network, we can

improve the distributed sorting result in [183] by a O(log2 n) factor. Moreover, it is

well known that sorting networks can be simulated by a butterfly network and other

hypercubic networks (see Chapter 3.5 in [181]). So, we first need to find a way to embed

the AKS sorting network on a butterfly-like one. To this end, we use the result by

Maggs and Vöcking [185] in which they show that an AKS network can be embedded on

a multibutterfly [146]. A k-dimensional multibutterfly network consists of k + 1 levels,

each consisting of 2k nodes. For 0 ≤ ℓ ≤ k and 0 ≤ i < 2k, let (ℓ, i) be the label of the ℓth

node on level i. The nodes on each level ℓ are partitioned into 2k sets Aℓ,0, . . . , Aℓ,2k−1
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where Aℓ,j = {(ℓ, i) : ⌊i/2k−ℓ⌋ = j}. The nodes in Aℓ,j are connected to the nodes in

Aℓ+1,2j and Aℓ+1,2j+1. To embed the AKS network we need to consider a subclass of the

multibutterfly networks that includes those multibutterfiles that can be constructed by

superimposing butterfly networks. Furthermore, Maggs and Vöcking [185] showed how

to embed the AKS network on what they called twinbutterfly, a multibutterfly obtained

by superimposing two butterfly networks. On the twinbutterflty each leaf node has

degree 4 and each non-leaf node has degree 8.

For completeness we state the result we are interested in.

Theorem 6.5 (Theorem 4.1 in [185]). An AKS network A of size N = O(n log n) can be

embedded into a twinbutterflyM of size at most κ ·N+o(N) with load 1, dilation 2, and

congestion 1, where κ ≤ 1.352 is a small constant depending on the AKS parameters.

Here the load of an embedding is the maximum number of nodes of the AKS network

mapped to any node of the twinbutterfly. The congestion is the maximum number of

paths that use any edge in the twinbutterfly, and the dilation is the length of the longest

path in the embedding. It follows that

Lemma 6.6. There exists a distributed algorithm that builds a twinbutterfly networkM
in O(log n) time.

Proof. Let nB = |C| be the number of nodes that must join together to form the Buffer

network B. The temporary twinbutterflyM can be built in O(log n) rounds by adapt-

ing the distributed algorithm for building a butterfly network in [14] described in Sec-

tion 6.2.1: (1) a leader l is elected in S; (2) a O(log n) height binary tree rooted in l is

constructed; (3) a cycle using the first nB(log nB+1) nodes of the tree in-order traversal

is built; and, (4) the cycle is then transformed into the desired twinbutterfly network

with log nB + 1 columns and nB rows in O(log n) rounds.

The idea is to use such a butterfly construction algorithm to build a twinbutterfly M
in O(log n) rounds and simulate the AKS algorithm on it. Moreover, M being a data

structure build on top of the Spartan network, it naturally enjoys a churn resiliency

property. In fact, every time a node v is churned out from S, a committee will temporary

cover for v in M (see Section 6.2.2). Finally, we show that the B can be created in

O(log n) rounds.

Lemma 6.7. The Creation phase can be computed in O(log n) rounds w.h.p..

Proof. M can be built in O(log n) rounds (Lemma 6.6). Moreover, to handle cases in

which κ ·N+o(N) (see Theorem 6.5) is greater than the number of nodes in the Spartan
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network S, we allow for nodes to represent a constant number of temporary “dummy”

nodes for the sake of building the needed multibutterfly. OnceM has been constructed,

we run AKS on such network and after O(log nB) = O(log n) rounds we obtain the

sorted list at the base of the new skip list we want to build. Next, each node u in the

buffer computes its maximum height ℓBmax(u) in the buffer skip list B and each level

0 < ℓ ≤ ℓmax(B) is created by copying the base level of the skip list. Moreover, each

node u at level 0 < ℓ ≤ ℓmax(B) can be of two types, effective or fill-in. We say that

a node u is effective at level ℓ if ℓ ≤ ℓBmax(u), and fill-in otherwise (see Figure 6.8(a)).

Next, we use the same parallel O(log n) rounds rewiring technique used in the Deletion

phase (see Section 6.2.3) to exclude fill-in nodes from each level and obtain a skip list

of effective nodes (see Figures 6.8(b)-6.8(c)). Wrapping up, to create the buffer network

we need O(log n) rounds to build the twibutterfly M, O(log n) rounds to run AKS on

M, O(log n) rounds w.h.p. to duplicate the levels (see Lemma C.1 in Appendix C.1)

and O(log n) rounds to run the rewiring procedure. Thus, we need O(log n) rounds8

w.h.p.

TailHead

(a)

TailHead

(b)

TailHead

(c)

Figure 6.8: Example of create procedure. In Figure 6.8(a), freshly created Buffer
network in which the black nodes are the effective nodes and red ones are the fill-in
nodes. Figure 6.8(b) shows the buffer network after the parallel rewiring phase in which
the green edges are the one created by the delete procedure. Finally, Figure 6.8(c) shows

the buffer network after the Creation phase.

6.2.5 Merge

As a starting point, we analyze the process of inserting (in parallel) a sequence of sorted

elements X in a skip list C. More precisely, each element v ∈ X starts the insertion

process in C at the same time and from the same spot. Intuitively, all these parallel

insertions can be seen as a group of elements traveling all together in the skip list. We

8We point out that the constant hidden by the O(·) notation is the one for the AKS sorting net-
work [184].
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will use the term cohesive group to describe a group of elements traversing the skip list

together. We define the leader of the cohesive group to be the element with the smallest

ID/key among the group. In addition, the group is assumed to be small enough to

ensure all nodes can exchange messages pairwise simultaneously in one round. While

traversing the skip list, the leader is in charge of querying the newly encountered nodes

and to communicate their ID/key to the cohesive group. Furthermore, it can happen

that at some point a subset X ′ ⊆ X separates from X and takes another route to level

0. When such a split happens, say X splits in two groups (see Proposition 6.8 below),

the newly created cohesive group X ′ elects as a leader the element with the smallest

ID/key in X ′. Note that such a split requires two rounds, one for the leader to inform

all nodes in the new cohesive group who their leader is and one for the nodes in the new

cohesive group to “introduce” themselves to their new leader.

Proposition 6.8. Let X = {x0, x1, . . . , xk} where xi−1 ≤ xi for i ∈ [1, k] be a set of

nodes that are traversing all together (i.e., a cohesive group) the skip list C. And let

v ∈ X be a node that separates from X at some time t ≥ 0, then all u ∈ X such that

u ≥ v will separate from X as well and will follow v.

Proof. For the sake of contradiction, let X = {x0, x1, . . . , xk} where xi−1 ≤ xi for

i ∈ [1, k] be a cohesive group that is traversing the skip list. Moreover, assume that xj

separates from X at some time t, and that there exists xℓ for ℓ ≥ j that does not follow

xj , i.e., xℓ does not separate from X. This generates a contradiction on the assumption

that the elements in X are sorted in ascending order. Thus, it can not happen.

Finally, we show that the time to insert a cohesive group in a skip list is at most twice

the time to insert a single element in the skip list.

Lemma 6.9. Let X = {x0, x1, . . . , xk} where xi−1 ≤ xi for i ∈ [1, k] be a set of cohesive

nodes that are inserted all together at the same time and from the top left sentinel node

in a skip list C. Then, the time to insert xk along with x0, x1, . . . , xk−1, xk is at most

twice the time to insert just xk.

Proof. We prove this lemma by induction. The base case of the induction is the time

needed to insert x0 and the elements before x0 in X, i.e., {∅}. Observe that the time

to insert x0 is at most twice the time to insert x0 because it is the first element in the

set X and its search path is x0’s optimal search path in C. The inductive hypothesis

is that the time to insert xk−1 along with {x0, x1, . . . , xk−1} is at most twice the time

to insert xk−1 and that xk−1’s search path is the optimal search path when we insert

only xk−1 from the left top-most sentinel node. As inductive step, we consider the time

needed to insert xk in C. xk’s search path can be divided in two regions: (i) a shared
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search path with xk−1 and (ii) an independent path in which xk travels by itself until it

reaches its destination. Moreover, observe that the shared region is a subset of the xk’s

optimal search path as well, otherwise (given that xk−1 and xk perform the same moves)

it would contradict the inductive hypothesis about xk−1 search path optimality. As for

the independent region, the correctness of the search/insert algorithm [149] implies that

it must be a subset of the optimal search path as well. Finally, by combining the shared

search path and the independent one we obtain that xk’s overall search path must be the

optimal one. Given that all the nodes move in parallel, we can conclude that the time

to insert xk along x0, x1, . . . , xk−1, xk is at most twice the time to insert just xk.

WAVE: An O(log n) merge procedure. Here we show one of the main contributions

of this paper. We provide a distributed protocol to merge two skip lists in O(log n)
rounds w.h.p. Intuitively, our merge procedure can be viewed as a top-down wave of

parallel searches. The searches are performed on C by elements in B. The wave is

initiated by the top-most nodes in B. At any point in time, the wave front represents

all the nodes in B that are actively looking for the right position in C. As nodes on the

wave front find their respective appropriate location, they get inserted into C. Thus,

when the wave has swept through C in its entirety, we get the required merged skip list.

Moreover, we notice that there must be only one cohesive group in the top level of the

skip list B, and that each couple of cohesive groups Xℓ, Yℓ at the same level ℓ < ℓmax(B)
must be separated by one (or more) nodes v that belongs to one (or more) cohesive

group Zℓ′ such that ℓ′ > ℓ.

Proposition 6.10. Given a skip list B, there is only one cohesive group at ℓmax(B).
Moreover, for each 0 ≤ ℓ < ℓmax(B), let Xℓ = {x0, x1, . . . , xk} be a cohesive group at

level ℓ. Then, Xℓ’s left neighbor (i.e. x0’s left neighbor at level ℓ) is a node v such that

ℓBmax(v) > ℓ.

Proof. Let ℓ be the maximum height of the skip list B and assume to have two disjoint

cohesive groups Xℓ and Yℓ. This implies that Xℓ and Yℓ are separated by one (or more

nodes) v such that ℓBmax(v) > ℓ. Thus we have a contradiction on ℓ being B’s maximum

height. Next, let 0 ≤ ℓ < ℓmax(B), consider the cohesive group Xℓ = {x0, x1, . . . , xk} and
its left neighbor v at level ℓ (i.e., v ∈ N

(L,ℓ)
B (x0)). Then v must be such that ℓBmax(v) > ℓ.

That is because, if ℓBmax(v) = ℓ then we would have v ∈ Xℓ and if ℓBmax(v) < ℓ, we would

have v /∈ N
(L,ℓ)
B (x0).

Before diving into the description of the WAVE protocol, we define the left and right

children of a node u at some level ℓ > 0 in a skip list. Informally, the right (resp. left)

children of a node u at level ℓ is defined by the set of contiguous nodes after (resp.
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before) u at level ℓ in the skip list. Formally, given a node u in the buffer network B at

level ℓ > 0 we define ΓL
ℓ′(u) = {v : v < u ∧ ℓmax(v) = ℓ′ ∧ ∀v < w < u, ℓmax(w) ≤ ℓ′}and

ΓR
ℓ′ (u) = {v : v > u ∧ ℓmax(v) = ℓ′ ∧ ∀u < w < v, ℓmax(w) ≤ ℓ′} as the left and right

children of u at level ℓ′ < ℓ in B. Moreover, we refer to u’s set of children at level ℓ′ as

the union of its left and right ones at level ℓ′, i.e., Γℓ′(u) = ΓL
ℓ′(u) ∪ ΓR

ℓ′ (u) and to its

overall set of children as the union of each Γℓ′(u) for all ℓ
′ < ℓ , i.e., Γ(u) =

⋃ℓ−1
ℓ′=0 Γℓ′(u).

Furthermore, we notice that two neighboring nodes u and w at level ℓ share a subset

of their children. In a similar way, we introduce the concept of parent of a node in a

skip list. Given a node u at some level ℓ < ℓmax(B), we say that z is a parent of u

if u ∈ Γ(z). Observe that each node u such that ℓmax(u) < ℓmax(B) has exactly two

parents. Figure 6.9 shows an example of the children-parent relationship defined above.

The children set of a node u can be seen as a depth 1 tree rooted in u where u’s children

are its leaves (see Figure 6.9(b)).

−∞ +∞
1 23 9855 6025 30

(a)

30251

23

60 30

98

60

60

55

(b)

Figure 6.9: Example of the parent-children relationship defined above. Figure 6.9(a)
is an example of a skip list. Figure 6.9(b) shows the children set Γ of nodes 23, 98, and

60, respectively.

The merge protocol is divided in two phases: (i) a preprocessing phase on the buffer net-

work B and (ii) a merge phase on the clean network C. The preprocessing phase takes care
of creating the cohesive groups at each level that must be merged into C and to “shorten”

the distance between every couple of nodes in such groups to guarantee fast communi-

cation time9 within the cohesive groups. More precisely, let Xℓ = {x0, x1, x2, . . . , xk} be
a set of consecutive nodes such that ℓBmax(x) = ℓ for each x ∈ Xℓ and 0 ≤ ℓ ≤ ℓmax(B).
Then, each node xi ∈ Xℓ for 1 ≤ i ≤ k sends its ID to x0 through its left neighbor.

Doing so will allow each xi to discover the ID of all the nodes xj ∈ Xℓ such that xj > xi

(see Figure 6.10). We observe that the preprocessing phase requires O(log n) rounds

w.h.p.

Lemma 6.11. Given a skip list of n nodes, the preprocessing phase requires O(log n)
rounds w.h.p.

The proof of Lemma 6.11 follows from the fact that each Xℓ for 0 ≤ ℓ ≤ ℓmax(B)
executes the protocol in parallel and that |Xℓ| = O(log n) w.h.p. (see Lemma C.2 in

9After the preprocessing phase, every couple of nodes in the same cohesive group can exchange
messages within O(1) rounds. Thus, a node u ∈ B can send messages to its children Γ(u) in O(1) time
as well.
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Figure 6.10: Example of the preprocessing operation on a cohesive group of nodes.
Figure 6.10(a), Figure 6.10(b) and Figure 6.10(c) show the cohesive group before, dur-

ing, and after the preprocessing phase, respectively.

Appendix C.1). Once the preprocessing phase is completed, the merge phase is executed.

In such phase, each node in the buffer network B can be in one of the following three

states {idle, merge, done}. Moreover, a node u ∈ B in idle state waits and keeps listening

to its two parents in B. A node in the merge state instead, is actively merging (as a

leader or follower) itself in the clean network C. Finally, a node that successfully merged

in C, enters the done state. Each node u in the buffer network maintains a set of children

Γ(u), parents locations (initially set to −∞), a starting point for its merge (initially set

to −∞), and the starting level for its own merge (initially set to be the topmost level

in C, i.e., ℓmax(C)). Moreover, this concept nicely extends to a cohesive group of nodes

that must travel together in the skip list C. In the first round of the merge protocol, the

unique cohesive group Xℓmax(B) = {x0, x1, . . . , xk} with x0 = −∞ and xk = +∞ in B’s
topmost level changes its state to merge and starts its merging phase in C from the left-

topmost sentry. For the sake of simplicity, we consider B’s left and right sentries as nodes

of the buffer network that must be merged with C10. We assume that such sentinels are

contained in C’s ones. Moreover, at each round, every cohesive group X ⊆ B on a node

v ∈ C at level ℓ that is in the merge state performs the following steps:

1. The leader x0 checks node v’s ID/key in C on which X is currently located;

2. x0 communicates v’s ID/key to its followers in B, i.e., to the nodes in X \ {x0};

3. x0 computes the split X ′ = {u ∈ V : u > z} where z is the right neighbor of v at

level ℓ and elects the element with smallest ID/key in X ′ as a leader of such new

cohesive group;

4. Each node u ∈ X̂, where X̂ = X \X ′, sends a message m(u) = ⟨v, z, “down”, ℓ⟩ to
its children Γ(u) in B;

5. Each node w ∈ X ′, sends a message m(w) = ⟨v, z, “right”, ℓ⟩ to its children Γ(w) in

B;

6. The new cohesive group X ′ separates from X and continues its merge procedure on

z at level ℓ;

10This does not affect the merge outcome. Moreover, when B is completely merged with C, we can
remove B’s sentinels from C in O(1) rounds.
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7. If the current level ℓ is at most ℓmax(x0), X̂ must be merged between v and z in C:

7.a. X̂ merges itself between v and z;

7.b. Each node u ∈ X̂ sends a message m(u) = ⟨u, y, “down”, ℓ⟩ where y is u’s

right neighbor in the newly merged area that includes v, X̂, and z to Γ(u);

7.c. Each node in u ∈ X̂ announces its successful merge at level ℓ to its children

Γ(u);

8. If the next level ℓ− 1 ≥ 0, then X̂ must proceed to the next level:

8.a. If at least one of X̂ neighbors at level ℓ is a node in B, i.e., {v, z} ∩ B ≠ ∅,
then X̂ waits for {v, z} ∩ B to be merged at level ℓ− 1 and proceeds with its

own merge at level ℓ− 1;

Furthermore, once a node is fully merged in level 0 of C, it enters the done state and

terminates. Next, we describe the behavior of the nodes in B upon receiving messages

from their parents. A node v, in the buffer network B in idle state is continuously

listening to its parents. v’s behavior changes according to the type of message it is

receiving. More precisely, let us assume that v receives a message of the type m(u) =

⟨L,R,move, level⟩ from its parent u:

If the message is sent by a node that is in the merge state at some level above ℓmax(v),

then v has to update its pointers:

1. If v < m(u).R and v.starting point ≤ m(u).L then v updates its starting point

and level for its own merge with the nodem(u).L andm(u).level, respectively;

2. If v > m(u).R and v.starting point < m(u).R then v updates its starting point

and level for its own merge with the nodem(u).R andm(u).level, respectively;

3. v updates its parents locations according to the move their parents performed

in C, i.e., if m(u).move = “down” then it updates the location of its parent u

with m(u).L, otherwise with m(u).R;

4. Checks if it can enter in the merge state, this happens if v becomes independent

from its parents, i.e., if v.starting point is different from the current location

of both its parents in C:
4.a. v looks at its left neighbor z at level ℓmax(v) in B. If z’s starting point

is the same as v’s one, then v sets itself as follower, otherwise v becomes

leader ;

4.b. If v is leader, it enters in the merge state starting the merge procedure in

C at v.starting point and level v.level to start along with its followers, i.e.,

the cohesive groupX = {v}∪{w : w ∈ N
(R,ℓmax(v))
B (v)∧v.starting point =

w.starting point} enters the merge state;
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If v is idle and discovers that both its parents successfully merged in C in level ℓ =

ℓmax(v), then it must change state to merge and proceed with its own merge phase in C
starting from v.starting point at level v.level to start. Moreover, as before, it:

1. v looks at its left neighbor z at level ℓmax(v) in B. If z’s starting point is the same

as v’s one, then v sets itself as follower, otherwise v becomes leader ;

2. If v is leader, it enters in the merge state starting the merge procedure in C at

v.starting point and level v.level to start along with its followers, i.e., the cohesive

group X = {v} ∪ {w : w ∈ N
(R,ℓmax(v))
B (v) ∧ v.starting point = w.starting point}

enters the merge state;

First and foremost, we notice that all the idle nodes in B correctly update their starting

points. More precisely, a node v ∈ B that updates its starting point, it can choose only

another point laying in its optimal search path from the top-left sentry to C’s bottom

most level. This property follows by the fact that each node v in B receives messages

only by its (left and right) parents in B, i.e., v receives a list of nodes ID that lay on the

optimal search paths of its parents in the skip list C′ = C ∪ B>ℓ obtained by merging C
and the elements of B situated in the level above ℓ. Thus, v updates its starting point

with nodes that it would encounter had it performed a classic insertion in C′. Thus, v’s
new starting point lays in its optimal search path. This property, allows the nodes in B
to “virtually” travel in C using the information shared by their parents. Next, we notice

that one critical part of our protocol is that a cohesive group X that was successfully

merged at some level ℓ and wants to proceed one level down to ℓ− 1 may have to wait

for its parents v and z to be successfully merged in such target level. This happens if,

at least one of X’s neighbors at level ℓ in C is an element in the buffer (i.e., it is one

of its parents in B) and it is still in its merging phase at level ℓ − 1. The next lemma

provides a bound on the time a cohesive group X needs to merge itself in the skip list

provided that it may have to wait for its parents to be successfully merged beforehand

at each level.

Lemma 6.12. Let X be a cohesive group at level 0 ≤ ℓ ≤ ℓmax(B) in B. The merge

time of X in C takes O(log n+ ℓmax(B)− ℓ) rounds w.h.p.

Proof. Assume that the cohesive group X was merged at level ℓ of the clean network

and has to proceed with its own merge at level ℓ− 1. Let v and z be X’s left and right

parents in B. We have three cases to consider: (i) X is independent from its parents;

(ii) X depends on at least one of its parents through all the levels ℓ′ < ℓ; and, (iii) X

may depend on one of its parents for some time and become independent at some point.

In the first case, X is merging itself in a sub-skip list that contains only elements in the
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clean network. Thus, X’s overall merging time requires O(log n) w.h.p. To analyze the

second case, we notice that as X depends on its parents, also X’s parents may depend on

their parents as well and so on. We can model the time a cohesive group X at level ℓ has

to wait in order to start its own merge procedure at level ℓ−1 as the time it would have

taken had it traveled in a pipelined fashion with its parents. Moreover, such pipelining

effect can be extended to include, in a recursive fashion, the parents of X’s parents, the

parents of the parents of X’s parents, and so on. Thus, X can be modeled as the tail

of such “parents-of-parents” chain (or pipeline), in which X must wait for all the nodes

in the pipeline to be merged at level ℓ− 1 before proceeding with its own merge in such

level. Moreover, we observe that, by our assumption, X is dependent on at least one of

its parents throughout the merge phase. Without loss of generality, let us assume that X

depends on one parent, say z. In other words, X is never splitting, and its placing itself

right after/before z at each level ℓ′ < ℓ. The time X takes to merge in one level ℓ′ after z

is O(1) (see Lemma 6.9). Thus, X merge itself in some level ℓ′ by time T ℓ′
z +O(1) where

T ℓ′
z is the time z needs to merge itself in level ℓ′. Furthermore, z may be dependent to one

of its parents, say w. Thus the time to insert z at level ℓ′ is T ℓ′
z = T ℓ′

w +O(1). If we repeat
this argument for all the levels ℓ̂ > ℓ′ we obtain that the time to merge the cohesive

group X at level ℓ′ can be defined as T ℓ′
y + ℓmax(B)− ℓ+1 = T ℓ′

y + ℓmax(B)− ℓBmax(X)+1

where y is the topmost parent in the pipeline of dependencies. Thus X’s overall merge

time is T 0
X = T 0

y + ℓmax(B)− ℓBmax(X) + 1 = O(log n+ ℓmax(B)− ℓBmax(X) + 1) w.h.p. In

the last case, X may depend on its parents for some time and then gain independency.

Assume that X depends its parent z until level ℓ′ and than gains independency. X’s

overall merge time is T 0
X = O(T ℓ′

z + 1 + log n) = O(log n) w.h.p.

Given Lemma 6.12, we can bound the overall running time of the WAVE protocol.

Lemma 6.13. Let C and B be two skip lists of n elements built using the same p-biased

coin. Then, the WAVE protocol merges C and B in O(log n) rounds w.h.p..

Proof. The proof follows by noticing that a idle cohesive group X in some level ℓ starts

its merge procedure when the wave sweeps through it. This happens within O(log n)
rounds w.h.p. from the WAVE protocol initialization time instant. Moreover, a idle

node/cohesive group, after entering the merge state needs O(log n+ ℓmax(B)− ℓ) rounds

w.h.p. to be fully merged in C (Lemma 6.12). That is, the merge time is at most

O(log n+ log n+ ℓmax(B)− ℓ) = O(log n) w.h.p.

Figure 6.11 shows an example of the WAVE protocol described above, each colored

wave represent a round of the merging protocol.
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Figure 6.11: Example of theWAVE protocol. Figure 6.11(a) and Figure 6.11(b) show
the clean network C (base skip list) and the preprocessed Buffer network B, respectively.
Figure 6.11(c) shows WAVE’s execution: light gray, light brown, and light blue waves
are the first, second and third rounds of the protocol’s execution. After the last round,
one step of rewiring is executed to remove the left and right sentries (ls, rs) from C. In
this example, the merging phase requires O(log |B|) rounds to merge the buffer network

B with C.

6.2.6 Update

After performing the previous phases, the live network Lmust be coupled with the newly

updated clean network C. A high level description on how to perform such update in

constant time is the following: during the duplication phase a “snapshot” (e.g., a copy)

of the clean network C is taken and used as the new L. Intuitively, this procedure

requires O(1) rounds because each node in C is taking care of the snapshot that can

be considered as local computation. However, we must be careful with the notion of

snapshot. To preserve dynamic resource-competitiveness we show how to avoid creating

new edges while taking a snapshot of C during this phase. Assume that every edge in

the clean network C has a length two local11 binary label λ in which the first coordinate

indicates its presence in C and the second one in L. Moreover, each label λ can be of

three different types: (1) “10” the edge is in C not in L; (2) “01” the edge is not in C
but it is in L; and, (3) “11” the edge is in both C and L. Moreover, assume that each

node u in C has the label λ(u, v) associated to its port encoding the connection with

node v. Then, each node u in C for each 0 ≤ ℓ ≤ ℓmax(u) performs the following local

computation:

11Meaning that each node u ∈ C has its own copy of the label λ for each edge incident to it. Observe
that for an edge (u, v) the local label of u can not differ from the one of v.
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1. If u’s port-label associated to the edge connected to the left neighbor at level ℓ (i.e.,

λ(u, v) such that v ∈ N
(L,ℓ)
C (u)) is “10” then set it to “11”;

2. If u’s port-label associated to the edge connected to the right neighbor at level ℓ (i.e.,

λ(u,w) such that w ∈ N
(R,ℓ)
C (u)) is “10” then set it to “11”;

Notice that during this phase no edge has the label “01” because C was “cleaned”

during the deletion phase. All the nodes in C executed the labeling procedure, and the

live network L is given by the edges with label “11”. It follows that this phase requires

a constant number of rounds.

Lemma 6.14. The update phase requires constant number of rounds.

Next, we show that all the phases in the maintenance cycle satisfy the dynamic resource

competitiveness constraint defined in Section 6.1.3.

Lemma 6.15. Each maintenance cycle is (α, β)-dynamic resource competitive with α =

O(log n) and β = O(polylog(n)).

Proof. In order to prove that our maintenance protocol is dynamic resource competi-

tive we suffice to show that a generic iteration of our maintenance cycle respects this

invariant.

Let ts be the time instant in which the deletion phase starts, and let te = O(ts +

log n). The overall churn between the previous deletion phase and the current one is

C(ts − O(log n), ts) = O(n), that is because we have O(n/ log n) churn at each round

for O(log n) rounds. The total amount messages sent during the phase is Õ(C(ts −
O(log n), ts)) and the number of formed edges is Õ(C(ts − O(log n), ts)). Thus the

overall amount of work during the deletion phase is W(ts, te) = Õ(C(ts −O(log n), ts)).

During the buffer creation phase, we create a twin-butterfly network M in O(log n)
rounds using O(log n) messages for each node at every round. Moreover, the twinbut-

terfly has O(n log n) nodes of which 2n nodes have degree 4 while the rest have degree

8. This implies that while building the twinbutterfly we create roughly O(n log n) edges

and we exchange O(n log2 n) messages. Next, during each round of the AKS algorithm,

each node u in M sends and receives a constant number of messages. Then, we copy

such a list O(log n) times w.h.p., in this way we create O(n log n) edges. Finally, in the

last step of the buffer creation phase, we run the deletion algorithm used in the previous

phase on a subset of the nodes in the sorted list. Putting all together, during this phase,

we have an overall amount of work of W(ts, te) = O(C(ts −O(log n), ts) · polylog(n)) =
Õ(C(ts −O(log n), ts)).
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During the merge phase, we merge the buffer network with the clean one. The pre-

processing step creates O(n log n) edges on the buffer network using at most polylog(n)

number of messages. During each step of the WAVE protocol sends O(n · polylog(n))
overall number of messages on the buffer network and creates O(n log n) edges in the

clean network. Putting all together, we have that the merge phase does not violate

our dynamic work efficiency requirements. Indeed the overall work is bounded by

W(ts, te) = O(C(ts −O(log n), ts) · polylog(n)) = Õ(C(ts −O(log n), ts)).

Finally, during the duplication phase there is no exchange of messages and no edge is

created.

We have that each phase of the maintenance cycle does not violate our resource com-

petitiveness requirements in Definition 6.1.

We conclude by showing that the skip list is maintained with high probability for nc

rounds, where c ≥ 1 is an arbitrary big constant.

Lemma 6.16. The maintenance protocol ensures that the resilient skip list is maintained

effectively for at least poly(n) rounds with high probability.

Proof. Each phase of the maintenance protocol (i.e., Algorithm 4) succeeds with prob-

ability at least 1 − 1
nc , for some arbitrary big constant c ≥ 1. Let X be a geometric

random variable of parameter p = 1
nc that counts the number of cycle needed to have the

first failure, then its expected value is E [X] = nc, for c ≥ 1. Moreover, the probability

of maintenance protocol succeeding in a round nr for some r < c is (1− 1
nc )n

r
, Without

loss of generality assume c > 1 and r = c−1, then (1− 1
nc )n

c−1 ≤ e−nc−1/nc ≥ 1− 1
n .

Proof of the Main Theorem (Theorem 6.2). To prove the main theorem it is

sufficient to notice that the skip list will always be connected and will never lose its

structure thanks to Lemma 6.3. Indeed, every time a group of nodes is removed from

the network, there are committees that in O(1) rounds will take over and act on their

behalf. This allows all the queries to go through without any slowdown. Thus all the

queries will be executed in O(log n) rounds with high probability even with a churn rate

of O(n/ log n) per round. Next we can show that the distributed data structure can be

efficiently maintained using maintenance cycles of O(log n) rounds each. To do this, it is

sufficient to show that each phase of our maintenance cycle (Algorithm 4) can be carried

out in O(log n) rounds (see Lemma 6.4, Lemma 6.7, Lemma 6.13, and Lemma 6.14).

Moreover, from Lemma 6.15 we have that each phase is (α, β)-dynamic resource com-

petitive with α = O(log n) and β = O(polylog(n)). Finally, the maintenance protocol
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ensures that the distributed data structure is maintained for at least nc rounds with

high probability where c ≥ 1 is an arbitrarily large constant.

6.2.7 Extending our approach to other data structures

The outlined maintenance protocol provides a convenient framework for constructing

churn-resilient data structures. Furthermore, it can be easily adapted to maintain a

more complex distributed pointer based data structure such as a skip graphs [7–10].

Indeed, with minor adjustments to the phases outlined in Algorithm 4, a maintenance

cycle capable of maintain such data structures against heavy churn rate can be devised.

To this end, we briefly discuss how to adapt our results to skip graphs. A skip graph [7],

can be viewed as an extension of skip lists. Indeed, both consists of a set of increasingly

sparse doubly-linked lists ordered by levels starting at level 0, where membership of

a particular node u in a list at level ℓ is determined by the first ℓ bits of an infinite

sequence of random bits associated with u, referred to as the membership vector of u,

and denoted by m(u). Let the first ℓ bits of m(u) as m(u)|ℓ. In the case of skip lists,

level ℓ has only one list, for each ℓ, which contains all elements u such that m(u)|ℓ = 1ℓ,

i.e., all elements whose first ℓ coin flips all came up heads. Skip graphs, instead, have 2ℓ

lists at level ℓ, which we can index from 0 to 2ℓ − 1. Node u belongs to the j-th list of

level ℓ if and only if m(u)|ℓ corresponds to the binary representation of j. Hence, each

node is present in one list of every level until it eventually becomes the only member of

a singleton list. Without loss of generality, assume that the skip graph has sentry nodes

as classical skip lists12. Thus, the skip graph can be maintained as follows:

Deletion. We can use the same O(log n) rounds approach described in Section 6.2.3 to

remove from the clean skip graph the nodes that have left the network.

Buffer Creation. To build the base level of the buffer skip graph we can use the same

O(log n) rounds approach described in Section 6.2.4. While, to construct the skip

graph from level 0, we build an “augmented” skip list in which each node u in each

level ℓ is identified by its ID/key and the list j at level ℓ in which u appears (there

are 2ℓ lists at level ℓ). Thus, each node u at some level ℓ can be: (i) effective in

the list j and fill-in for the remaining i ̸= j, for j, i ∈ [1, 2ℓ]; or, (ii) fill-in in all the

lists j ∈ [1, 2ℓ]. Finally, such augmented skip list is transformed into a skip graph

by running (in parallel) Algorithm 5 in Section 6.2.3 on each level ℓ for which there

exists at least one fill-in node.

12Thus, at each level ℓ there are 2ℓ sentinels (one for each list in such level).
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Merge. We can use the same merge phase described in Section 6.2.5, with the only

difference that a node u in the merge state at some level ℓ, must be merged in one

of the 2ℓ list in such level.

Duplicate. We can use the same approach described in Section 6.2.6.

Consequently, we can claim a similar result to Theorem 6.2 for skip graphs. In essence,

with small changes in the delete, buffer creation, merge and update algorithms, our

maintenance algorithm can be tailored to the specific data structure in question. Thus,

making our approach ideal for building complex distributed data structures in highly

dynamic networks.

6.2.8 Extending our approach to deal with multiple keys on each node

Throughout the paper we assumed that each node in the network posses exactly one

element of the data structure. This assumption can be relaxed to deal with multiple

keys on each node. Indeed, in the case in which in the network there are t ·n keys, where

t > 0, all the techniques described above allow to maintain the data structure in the

presence of the same adversarial churn rate.

Corollary 6.17. Given a network with n nodes in which each vertex v possesses t

elements in the skip list for some t > 1. Then maintenance protocol requires O(t · log n)
rounds to build and maintain a resilient skip list that can withstand heavy adversarial

churn at a churn rate of up to O(n/ log n) nodes joining/leaving per round.



Chapter 7

Conclusions

In this chapter, we summarize the results of this thesis and discuss future research

directions.

In Chapter 3 we experimentally compared three global and three local proxies for short-

est temporal betweenness rankings. One of these local proxies is a novel temporal degree

notion, called the pass-through degree, which encodes the number of neighbor pairs that

are temporally connected by a two-hop path passing through the node at hand. Our

experimental results depict the performance of both global and local proxies in terms of

running time and ranking quality. When applied to very large temporal networks, the

pass-through degree clearly outperforms all the other competitors in terms of time per-

formance. The pass-through degree achieves a time ratio that is around two, three, and

four orders of magnitude better than Brandes, prefix-foremost temporal betweenness,

and the fastest considered Onbra variant, respectively. In terms of ranking quality, the

medians of the two time-intense Onbra variants are best, followed by Brandes, PTD,

prefix-foremost temporal betweenness, and the fastest Onbra variant.

In Chapter 4 we proposed MANTRA, a novel framework for approximating the tempo-

ral betweenness centrality on large temporal networks. MANTRA relies on the state-of-

the-art bounds on supremum deviation of functions based on the c-MCERA to provide

a probabilistically guaranteed absolute ε-approximation of such centrality measure. Our

framework includes a fast sampling algorithm to approximate the temporal diameter,

average path length, and connectivity rate up to a small error with high probability.

Such an approach is general and can be adapted to approximate several versions of

these quantities based on different temporal path optimalities (e.g. [70, 71]). Our ex-

perimental results depict the performances of our framework versus the state-of-the-art

algorithm for the temporal betweenness approximation. MANTRA consistently out-

performs its competitor in terms of running time, sample size, and allocated memory.
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Furthermore, our framework is the only available option to obtain meaningful temporal

betweenness centrality approximations when we do not have access to servers with a

large amount of memory. In the spirit of reproducibility, we developed an open-source

framework in Julia that allows any user with an average laptop to approximate the

temporal betweenness centrality on any kind of graph.

In Chapter 5 we introduced two models of dynamic random graphs inspired by the

network formation protocol of the Bitcoin P2P network. We simulated the models to

evaluate the structural properties of the snapshots of the dynamic graphs and to measure

the time it takes a message starting at a random node to reach all, or almost all, the

nodes. The results of our simulations show that the network structure generated by

the E-RAES, by the V-RAES, and by a combination of the two models is globally very

robust, in the sense that the network can quickly rebuild itself after node and edge

failures. Moreover, the simulations of the flooding procedure show that the information

spreading in the two models is fast and reliable, for the E-RAES essentially at any edge-

failure rate, and for the V-RAES up to a node-failure rate as high as 70%. The outcomes

of the simulations on the combined model EV-RAES are similar to those obtained in the

V-RAES model for a large range of parameters. Since the degree of a full-node in the

Bitcoin network is directly correlated to the amount of traffic going through the node,

our results suggest that it is quite safe, for full-nodes of the Bitcoin network that need

to reduce the bandwidth usage, to change the default value of the maximum number

of connections from 125 to much smaller values. On the one hand, this significantly

reduces the upload network traffic and, on the other hand, our simulations suggest that

it does not compromise the overall stability and reliability of the network.

In Chapter 6 we proposed the first churn-resilient skip list that can tolerate a heavy

adversarial churn rate of O(n/ log n) nodes per round. The data structure can be seen

as a four-network architecture in which each network plays a specific role in making the

skip list resilient to churns and keeping it continuously updated. Moreover, we provided

efficient O(log n) rounds resource competitive algorithms to (i) delete a batch of elements

from a skip list (ii) create a new skip list and, (iii) merge together two skip lists. This

last result is the first algorithm that can merge two skip lists (as well as a skip list and

a batch of new nodes) in O(log n) rounds w.h.p.We point out that these algorithms can

be easily adapted to work on skip graphs [7, 9, 10].

In a broader sense, our technique is general and can be used to maintain any kind of

distributed data structure despite heavy churn rate. The only requirement is to devise

efficient delete, buffer creation, merge, and update algorithms for the designated data

structure.
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An additional contribution of our work is the improvement on the O(log3 n) rounds

state-of-the-art technique for sorting in the Node-Capacitated Clique model [186]. We

show how to sort n elements (despite a high churn rate) in O(log n) rounds using results

for sorting network theory. However, given the impracticability of the AKS sorting

network, our result is purely theoretical. In practice, it could be easily implemented

using Batcher’s network instead of the AKS one. This change would slow down the

bootstrap phase and the maintenance cycle to O(log2 n) rounds.

Finally, given the simplicity of our approach, we believe that our algorithms could be

used as building blocks for other non-trivial distributed computations in dynamic net-

works.

There are many possible extensions of the contributions of this thesis and new directions

for future research. We first discuss possible future investigations in the context of

temporal graph mining.

A first future direction is explaining the correlations between our novel temporal de-

gree notion (PTD) and the shortest temporal betweenness by using temporal graph

parameters, such as the ones defined in the works of Tang et al. [187] and Nicosia et

al. [22]. It would also be interesting to use PTD as a proxy for both static and temporal

centralities in the context of routing schemes [188], as its local character enables an

efficient distributed computation. From a theoretical point of view, possible directions

of research include finding a conditional lower bound on the time complexity of com-

puting the shortest temporal betweenness that is better than the lower bound implied

by its non-temporal counterpart. Proving a conditional lower bound on the compu-

tation of the ego-network betweenness measures (or designing a better algorithm) is

also a very challenging question. Moreover, the pass-through degree easily generalises

to k-hop paths (instead of 2-hop paths). We believe that designing a quasi-linear time

algorithm for computing such a generalisation, and verifying its quality in terms of prox-

ying the shortest temporal betweenness, is the most natural continuation of this work.

Furthermore, our novel algorithm MANTRA could be improved in terms of running

time by combining our framework with the results by Zhang et al. [189] (WWW, 2024)

and Brunelli et al. [190] (KDD, 2024) to speed up the temporal graph traversal for

the shortest-temporal betweenness computation. In addition, a variant of MANTRA

for the temporal edge betweenness could be employed to find communities in tempo-

ral graphs using a Girvan–Newman [191] approach to define a hierarchical clustering

method to detect communities in temporal graphs. Such an algorithm would repeatedly

alternate three phases: a phase of edge-betweenness estimation, a phase of temporal

graph pruning in which k underlying edges with the highest temporal betweenness are
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removed from the network, and a phase of temporal connectivity testing which will es-

tablish when to stop the “partitioning cycle”. Moreover, MANTRA could potentially

be used and extended to other temporal path-based centrality measures [37, 192]. Fi-

nally, our fast sampling-based approximation algorithm for the temporal distance-based

metrics can be easily adapted to compute temporal-harmonic centrality in big temporal

networks [192].

We continue the description of the possible extensions and contributions of this thesis by

discussing possible future investigations in the context of efficient distributed algorithms

in highly dynamic networks.

An interesting future direction for the work in Chapter 5, is to provide a rigorous theo-

retical analysis of some of the proposed dynamic graph models. A first step to provide

such a formal analysis could be considering a different version of the Vertex-Dynamic

RAES in which the churn is adversarial (see, for example [11]). We believe that for such

a different setting, we can provide a theoretical analysis of the dynamic-graph model.

Another fundamental and extremely interesting future research direction is to maintain

a distributed data structure in the presence of Byzantine nodes (i.e., malicious nodes)

along with the churn. Considering both, Byzantine nodes and churn would make our

result even more general and adaptable to a wide range of scenarios.



Appendix A

Appendix for Chapter 4

A.1 Extension of the (⋆)-Temporal Betweenness Centrality

to the edges.

We extend the concept of temporal betweenness to the temporal and static underlying

edge of a given temporal graph G = (V, E , T ) as follows

Definition A.1 (Temporal Edge Betweenness). The temporal betweenness of any edge

e = (u, v) in the underlying graph of a temporal graph G is defined as:

b(⋆)e =
1

n(n− 1)

∑
s ̸=z

σ
(⋆)
sz (e)

σ
(⋆)
sz

(A.1)

We define the temporal betweenness of a temporal edge as follows:

b
(⋆)
e,t =

1

n(n− 1)

∑
s ̸=z

σ
(⋆)
sz (e, t)

σ
(⋆)
sz

(A.2)

Where σ
(⋆)
sz (e, t) is the number of (⋆)-temporal paths from s to z passing through the

underlying edge1 e at time t. Now we define the temporal edge betweenness of an

underlying edge e as the sum of the temporal edge betweenness values of its appearances

at time (e, t)

Lemma A.2. For any underlying edge e ∈ E it holds:

b(⋆)e =
1

n(n− 1)

T∑
t=0

b
(⋆)
e,t (A.3)

1Equivalently, let e = (u, v), then σ
(⋆)
sz (e, t) is the number of (⋆)-temporal paths from s to z passing

through the temporal edge (u, v, t).
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Proof.

b(⋆)e =
1

n(n− 1)

∑
s̸=z

σ
(⋆)
sz (e)

σ
(⋆)
sz

=
1

n(n− 1)

∑
s ̸=z

T∑
t=0

σ
(⋆)
sz (e, t)

σ
(⋆)
sz

=
1

n(n− 1)

T∑
t=0

b
(⋆)
e,t

Analogously to Lemma 4.2, we can show that the sum of the (⋆)-temporal betweenness

centrality of the underlying edges is equal to the average number of edges in a (⋆)-

temporal path. Given a temporal graph G = (V, E , T ) define

Ψ(⋆) =
1

n(n− 1)

∑
s,z∈V

∑
e∈E

1[e ∈ tpsz]

Where 1[e ∈ tpsz] assumes value 1 if and only if the underlying edge e ∈ E appears in

the temporal path tpsz. Then the following lemma holds:

Lemma A.3.
∑

e∈E b
(⋆)
e = Ψ(⋆)

Proof. Equation (A.1) can be rewritten as

b(⋆)e =
1

n(n− 1)

∑
s,z∈V

∑
tp∈Γ(⋆)

sz

1[e ∈ Int(tp)]

σ
(⋆)
sz

Summing over the underlying edges e ∈ E we obtain:

∑
v∈V

b(⋆)e =
1

n(n− 1)

∑
s,z∈V

∑
tp∈Γ(⋆)

sz

1

σ
(⋆)
sz

∑
e∈E

1[e ∈ Int(tp)]

=
1

n(n− 1)

∑
s,z∈V

σ
(⋆)
sz

σ
(⋆)
sz

∑
e∈E

1[e ∈ Int(tpsz)] =
1

n(n− 1)

∑
s,z∈V

∑
e∈E

1[e ∈ Int(tpsz)] = Ψ(⋆)

Given Lemma A.2, Lemma A.3, and the temporal accumulation results in Buß et al.

[3], we can adapt all the algorithms2 for computing the (⋆)-Temporal Vertex Between-

ness centrality to compute the (⋆)-Temporal Edge Betweenness of the underlying graph.

Edge-temporal betweenness centrality can be used to develop fast temporal-community

detection algorithms by using an approach similar to the well know Girwan-Newman

algorithm [191]. Our approximation algorithms can be used to efficiently partition tem-

poral graphs by removing the top-k underlying/temporal edges with highest temporal-

betweenness scores and find communities. Moreover, given Lemma A.3, we have the

2Exact and approximate ones.
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following corollary of Theorem 4.13 on the sufficient sample size for the (⋆)-temporal

edge betweenness:

Corollary A.4. Let F = {f(e), e ∈ E} be a set of function from a domain D to [0, 1].

Let f(e) be a function such that E [f(e)] = b
(⋆)
e . Define v̂ ∈ (0, 1/4] and Ψ(⋆) ≥ 0 such

that

max
e∈E

Var(f(e)) ≤ v̂ and
∑
e∈E

b(⋆)e ≤ Ψ(⋆)

fix ε, δ ∈ (0, 1), and let S be an i.i.d. sample taken from D of size

|S| ∈ O
(
v̂ + ε

ε2
ln

(
Ψ(⋆)

δv̂

))

It holds that SD(F ,S) ≤ ε with probability 1− δ over S.

A.2 Other estimators for the (⋆)-temporal betweenness cen-

trality

In this section we present other two unbiased estimators for the (⋆)-temporal betweenness

centrality.

A.2.1 The Random Temporal Betweenness Estimator

We define the Random Temporal Betweenness estimator (rtb). An intuitive technique

to obtain an approximation of the (⋆)-temporal betweenness centrality of a temporal

graph G is to run the exact temporal betweenness algorithm on a subset S of nodes

selected uniformly at random from V . Thus, in this case, the sampling space Drtb is

the set V of vertices in G, and the distribution πrtb is uniform over this set. The family

Frtb = {b̃(⋆)rtb(v|s) : v ∈ V }, contains one function b̃
(⋆)
rtb(v|s) for each vertex v, defined as:

b̃
(⋆)
rtb(v|s) =

1

n− 1
·
∑
z∈V
z ̸=s

σ
(⋆)
sz (v)

σ
(⋆)
sz

∈ [0, 1] (A.4)

It follows that

Lemma A.5. The rtb is an unbiased estimator of the (⋆)-temporal betweenness cen-

trality.
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Proof.

E
[
b̃
(⋆)
rtb(v|s)

]
=
∑
s∈V

Pr (s) · b̃(⋆)rtb(v|s) =
∑
s∈V

1

n

 1

n− 1

∑
z ̸=s ̸=v

σ
(⋆)
sz (v)

σ
(⋆)
sz



The function b̃
(⋆)
rtb(v|s) is computed by performing a full (⋆)-temporal breadth first search

visit from s, and then backtracking along the temporal directed acyclic graph as in the

exacts algorithms [3]. The rtb framework computes all the sets Γ
(⋆)
sz from the sampled

vertex s to all other vertices z ∈ V using a full (⋆)-TBFS. Moreover, in a worst-case

scenario this algorithm could touch all the temporal edges in the temporal graph at

every sample making the estimation process slow. As for the static case [193, 194], this

algorithm does not scale well as the temporal network size increases.

A.2.2 The Temporal Riondato and Kornaropoulos estimator

We extend the estimator for static graphs by Riondato and Kornaropoulos in [195] to the

temporal setting. The algorithm, (1) computes the set Γ
(⋆)
sz as ob; (2) randomly selects

a (⋆)-temporal path tpsz from Γ
(⋆)
sz ; and, (3) increases by

1
r the temporal betweenness of

each vertex v in Int(tp) (where r is the sample size). The procedure to select a random

temporal path from Γ
(⋆)
sz is inspired by the dependencies accumulation to compute the

exact temporal betweenness scores by Buß et al.[3]. Let s and z be the vertices sampled

by our algorithm. We assume that s and z are temporally connected, otherwise the

only option is to select the empty temporal path tp∅. Given the set Γ
(⋆)
sz of all the

(⋆)-temporal paths from s to z, first we notice that the truncated (⋆)-TBFS from s to

z produces a time respecting tree from the vertex appearance (s, 0) to all the vertex

appearances of the type (z, tz) for some tz. Let tp∗ be the sampled (⋆)-temporal path

we build backwards starting from one of the temporal endpoints of the type (z, tz) for

some tz. First, we sample such (z, tz) as follows: a vertex appearance (z, tz) is sampled

with probability σtz
sz/(

∑
t σ

t
sz) = σtz

sz/σsz, where σ
t
sz is the number of (⋆)-temporal paths

reaching z from s at time t. Assume that (z, tz) was put in the sampled path tp∗, i.e.,

tp∗ = {(z, tz)}. Now we proceed by sampling one of the temporal predecessors (w, tw)

in the temporal predecessors set P (z, tz) with probability σtw
sw/(

∑
(x,t)∈P (z,tz)

σt
sx). After

putting the sampled vertex appearance, let us assume (w, tw), in tp∗ we iterate the same

process through the predecessors of (w, tw) until we reach (s, 0).

Theorem A.6. Let tp∗sz ∈ Γ
(⋆)
sz be the (⋆)-temporal path sampled using the above proce-

dure. Then, the probability of sampling tp∗sz is Pr (tp∗) = 1

σ
(⋆)
sz
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Proof. Let us simplify the notation with σsz = σ
(⋆)
sz . The probability of getting such tp∗

using the aforementioned temporal path sampling technique is:

Pr (tp∗) =
σtz
sz∑
t σ

t
sz

· σ
twk−1
swk−1∑

(x,t)∈P (z,tz)
σt
sx

· σ
twk−2
swk−2∑

(x,t)∈P (wk−1,tk−1)
σt
sx

· · ·

σ
tw1
sw1∑

(x,t)∈P (w2,t2)
σt
sx

· 1∑
(x,t)∈P (w1,t1)

σt
sx

Observe that σtw
sw =

∑
(x,t)∈P (w,tw) σ

t
sx and that

∑
t σ

t
sz = σsz. Thus, the formula can be

rewritten as follows:

Pr (tp∗) =
σtz
sz

σsz
· σ

twk−1
swk−1

σtz
sz
· · · 1

σ
tw1
sw1

=
1

σsz

and the fact that (if the temporal graph has no self loop) for (w1, tw1), which is a

temporal neighbor of (s, 0), σsw1 = 1.

Observe that each tpsz ∈ TP(⋆)
G is sampled according to the function πtrk(tpsz) =

1
n(n−1)

1

σ
(⋆)
sz

which (according to Theorem A.7) is a valid probability distribution over

Dtrk = TP(⋆)
G .

Theorem A.7. The function πtrk(tpsz), for each tpsz ∈ Dtrk, is a valid probability

distribution.

Proof. Let Γ
(⋆)
sz be the set of (⋆)-optimal temporal paths from s to z where s ̸= z. Then,

∑
tpsz∈Dtrk

π(tpsz) =
∑

tpsz∈Dtrk

1

n(n− 1)

1

σ
(⋆)
sz

=
∑
s∈V

∑
z∈V
s ̸=z

∑
tpsz∈Γ(⋆)

sz

1

n(n− 1)

1

σ
(⋆)
sz

=
∑
s∈V

∑
z∈V
s̸=z

1

n(n− 1)

σ
(⋆)
sz

σ
(⋆)
sz

=
1

n(n− 1)

∑
s∈V

∑
z∈V
s ̸=z

1 =
1

n(n− 1)

∑
s∈V

(n− 1) = 1

For tpsz ∈ Dtrk, and for all v ∈ V define the family of functions Ftrk = {f (⋆)
trk(v) : v ∈ V }

where b̃
(⋆)
trk(v|tpsz) = 1 [v ∈ Int(tpsz)]. Observe that

Lemma A.8. For b̃
(⋆)
trk(v) ∈ F and for all tpsz ∈ Dtrk, such that each tpsz is sampled

according to the probability function π(tpsz), then E
[
b̃
(⋆)
trk(v|tpsz)

]
= b

(⋆)
v .
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Proof.

Etpsz∈Dtrk

[
b̃
(⋆)
trk(v|tpsz)

]
=

∑
tpsz∈Dtrk

π(tpsz )̃b
(⋆)
trk(v|tpsz) =

∑
tpsz∈Dtrk

b̃
(⋆)
trk(v|tpsz)

n(n− 1)σ
(⋆)
sz

=
1

n(n− 1)

∑
s,z∈V
s ̸=v ̸=z

∑
tp∈Γ(⋆)

sz

1 [v ∈ Int(tp)]

σ
(⋆)
sz

=
1

n(n− 1)

∑
s,z∈V
s ̸=v ̸=z

σ
(⋆)
sz (v)

σ
(⋆)
sz

A.2.3 Statistical Properties of the estimators

In this section, we discuss the differences between ob, trk, and rtb estimators in terms of

statistical properties. Furthermore, since they share the same properties with their static

counterparts, all the results in [77] directly extend to the aforementioned estimators.

The key observation is that the three estimators, being unbiased, are equal to the the

exact (⋆)-temporal betweenness in expectation, and each simply commutes gradually less

randomness from the inner sample to the outer expectations. Thus, running MANTRA

with these different estimators may be seen as progressively computing more random

stochastic approximation of the exact algorithm. To see why this is true, we observe

that, by running MANTRA’s estimation phase with r = 1 samples, the relationship

between these estimators can be described as follows:

b(⋆)v = Es∈V



ob︷ ︸︸ ︷
Es ̸=z

Etpsz∈Γ(⋆)
sz

[
b̃
(⋆)
trk(v|tpsz)

]
︸ ︷︷ ︸

trk




︸ ︷︷ ︸
rtb

where s is sampled uniformly at random from V , z form V \ {s}, and tpsz is sampled

uniformly at random from Γ
(⋆)
sz if s and z are temporally connected, otherwise tpsz = {∅}.

This suggests that each estimator computes a conditional expectation as a proxy for the

(unconditional) expectation of the temporal betweenness centrality.

A well established way to compare unbiased estimators for the same quantity is to com-

pare their variances3. The results by Cousins et al., [77] directly apply to the temporal

setting. We have the following corollary:

3This also gives information about the (expected) Mean Squared Error of the estimators.
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Corollary A.9. For any v ∈ V it holds

Var

[
b̃
(⋆)
ob (v)

b̃trk(v)(⋆)

]
≤ max

s
s ̸=z

σ
(⋆)
sz (v)

σ
(⋆)
sz

∈ [0, 1]

Var

[
b̃
(⋆)
rtb(v)

b̃trk(v)(⋆)

]
≤ max

s
Ez ̸=v

[
σ
(⋆)
sz (v)

σ
(⋆)
sz

]
∈ [0, 1]

and,

Var

[
b̃
(⋆)
rtb(v)

b̃
(⋆)
ob (v)

]
≤ 1

The corollary tells us that rtb is the estimator that has lowest variance among all of

them. This is not surprising because rtb collects more information per sample compared

to the remaining ones. However, this strength is also its major weakness because the

rtb requires full (⋆)-temporal BFSs that are much slower than the truncated ones used

by ob and trk. Between, these last two estimators, ob is the one that collects more

information. That is because, once the truncated temporal BFS from s to z is completed,

ob updates the temporal betweenness of every encountered node v ̸= s ̸= z.

A.3 Additional Experiments

A.3.1 Experiments for the shortest (foremost)-temporal betweenness

Here we provide the results of the experiments in Section 4.4 for the shortest-foremost

temporal betweenness centrality. As previously mentioned, these plots follow the same

trend of the ones for the prefix-foremost and shortest temporal betweenness. Moreover,

we display the experiments for small values of ε that have been excluded from Chapter 4.
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Figure A.1: Experimental analysis for ε ∈ {0.01, 0.007, 0.005, 0.001} For the Shortest-
foremost temporal betweenness. Comparison between the running times and sample

sizes of ONBRA and MANTRA (a-b).
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Figure A.2: Experimental analysis for ε ∈ {0.01, 0.007, 0.005, 0.001} For the Shortest-
foremost temporal betweenness. Comparison between the allocated memory (a) of
ONBRA and MANTRA, and the relation between running time and sample size for

MANTRA (b).
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(a) (b)

Figure A.3: Experimental analysis for ε ∈ {0.1, 0.07, 0.05} For the Shortest and
Shortest-foremost temporal betweenness. Comparison between the running times (a-

b) of ONBRA and MANTRA.

(a) (b)

Figure A.4: Experimental analysis for ε ∈ {0.1, 0.07, 0.05} For the Shortest and
Shortest-foremost temporal betweenness. Comparison between the sample sizes (a-b)

of ONBRA and MANTRA.
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(a) (b)

Figure A.5: Experimental analysis for ε ∈ {0.1, 0.07, 0.05} For the Shortest and
Shortest-foremost temporal betweenness. Comparison between the allocated space (a-

b) of ONBRA and MANTRA.

(a) (b)

(c)

Figure A.6: Experimental analysis for ε ∈ {0.1, 0.07, 0.05} For the Prefix-foremost
temporal betweenness. Comparison between the running times (a), sample sizes (b),

and allocated memory (c) of ONBRA and MANTRA.
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Appendix for Chapter 5

B.1 Experiments for other values of d and c

In this section, we provide the results obtained by simulating E/V/EV-RAES with

other values of d and c. More precisely, we show the behavior of the models with

d = 3, c = 3, and with an “interpolated“ setting between d = 4, c = 1.5 and the default

parameters of the Bitcoin Protocol (d = 8, c = 15.625). These experiments show that

the results are qualitatively very similar to the ones for d = 4 and c = 1.5.

B.1.1 d = 3 and c = 3

In this section, we present the results of the simulations for all the models using d = 3,

and c = 3. Moreover, it can be noticed that the plots have a similar trend of the ones for

d = 4, and c = 1.5. Figures B.1, B.2 show, respectively, the same experiments performed

for the E-RAES model in Section 5.3.2 and Section 5.3.3. While, Figures B.3,B.4 show

the results of the simulations for the V-RAES in Section 5.4.1, and 5.4.2

135
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E-RAES

Figure B.1: Average spectral gap for E-RAES of 10 runs of 100 rounds each, for
d = 3, c = 3, and increasing values for number of nodes n and edge-failure probability

p. The spectral gap is computed before the edge failure step.

Figure B.2: Semi-log plot of the average flooding time (over 10 runs) with 29 ≤ n ≤
215, p ≤ 0.9.

V-REAES

Figure B.3: Average over 10 runs of the evolution of the fraction of informed nodes
αt, at each time step. The ratio λ/q is fixed to 215.

Figures B.5,B.6, show, the results of the EV-RAES simulations using d = 3, c = 3 and

the same values of Section 5.5 for λ/q, p, and q.
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Figure B.4: Semi-log-plot of the average flooding time trend (over 10 runs) of the
V-RAES with 29 ≤ λ/q ≤ 215.

EV-RAES

Figure B.5: Evolution of the fraction of informed nodes αt. The ratio λ/q is fixed to
215.

Figure B.6: Semi-log-plot of the average flooding time (over 10 runs) of the EV-
RAES with 29 ≤ λ/q ≤ 215, node disappearance rate q = 0.1, 0.3, 0.5, and edge

disappearance rate p = 0.1, 0.3.
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B.1.2 d = 6 and c = 5

In this section, we present the results of the simulations for all the models using d = 6,

and c = 5. Moreover, it can be noticed that the plots have a similar trend of the ones for

d = 4, and c = 1.5. Figures B.7, B.8 show, respectively, the same experiments performed

for the E-RAES model in Section 5.3.2 and Section 5.3.3. While, Figures B.9,B.10 show

the results of the simulations for the V-RAES in Section 5.4.1, and 5.4.2

E-RAES

Figure B.7: Average spectral gap for E-RAES of 10 runs of 100 rounds each, for
d = 6, c = 5, and increasing values for number of nodes n and edge-failure probability

p. The spectral gap is computed before the edge failure step.

Figure B.8: Semi-log plot of the average flooding time (over 10 runs) with 29 ≤ n ≤
215, p ≤ 0.9.
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V-RAES

Figure B.9: Average over 10 runs of the evolution of the fraction of informed nodes
αt, at each time step. In the plots the ratio λ/q is fixed to 215.

Figure B.10: Semi-log-plot of the average flooding time trend (over 10 runs) of the
V-RAES with 29 ≤ λ/q ≤ 215.



Models and Algorithms for Temporal Betweenness Centrality and Dynamic Distributed Data Structures 140

Figures B.11,B.12, show, the results of the EV-RAES simulations using d = 6, c = 5

and the same other values for λ/q, q, and p of Section 5.5.

EV-RAES

Figure B.11: Evolution of the fraction of informed nodes αt. The ratio λ/q is fixed
to 215.

Figure B.12: Semi-log-plot of the average flooding time (over 10 runs) of the EV-
RAES with 29 ≤ λ/q ≤ 215, node disappearance rate q = 0.1, 0.3, 0.5, and edge

disappearance rate p = 0.1, 0.3.
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Appendix for Chapter 6

C.1 Useful Skip list properties

Lemma C.1. The height of a n-element skip list is O(log n) w.h.p.

Proof. Let Yi for i ∈ [n] be the random variable that counts the number of consecutive

heads we obtain while tossing a p-biased coin before we get a tail. Moreover, define h

to be the maximum height of the skip list i.e., h = 1 +max{Yi : i ∈ [n]}. Observe that

Pr (Yi ≥ k) = pk−1, and that by a straightforward application of the union bound we

obtain the probability of having a skip list of height at least k, Pr (h ≥ k) ≤ npk−1.

Choosing k = 4 log1/p n+1, we obtain a high confidence bound for the number of levels

in the distributed data structure

Pr
(
h ≥ 4 log1/p n+ 1

)
≤ n(1/n)4 = 1/n3 (C.1)

Moreover, h’s expected values is

E [h] =
∑
i>0

Pr (h ≥ i) =

4 logn∑
i=1

Pr (h ≥ i) +
∑

i>4 logn

Pr (h ≥ i) ≤
4 logn∑
i=1

1 +
∑

i>4 logn

npi−1

(C.2)

≤ 4 log n+ np4 logn

∑
i≥1

pi−1

 = 4 log n+ n

(
1

n4

)(
1

1− p

)
≤ 4 log n+ 1 = O(log n)

(C.3)

Where the last inequality holds if the log is in base 1/p and if n is sufficiently large.
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Next, we say that Xℓ = {x1, x2, . . . , xk} is a run/cohesive group of nodes in a skip list

L at level ℓ, if Xℓ is a set of consecutive nodes such that ℓLmax(xi) = ℓ for each xi ∈ Xℓ.

Moreover, we give a high confidence bound on the size of a run Xℓ.

Lemma C.2. The size of a run of nodes Xℓ for some level ℓ, is at most O(log n) w.h.p.,
and its expected value is 1/(1− p).

Proof. The size of a run of nodes |Xℓ| is a geometric random variable with parameter

1− p. Thus,

Pr (|Xℓ| ≥ k) ≤ (1− p)k−1 (C.4)

Choosing k = c log1−p n+ 1 for c ≥ 1, gives us a high confidence bound on the number

of consecutive nodes in a run of node Xℓ at some level ℓ. Indeed,

Pr
(
|Xℓ| ≥ c log1−p n+ 1

)
≤ 1/nc (C.5)

Moreover, its expected value is E [|Xℓ|] = 1/(1− p), assuming p = 1/2 (in other words,

constant), we have that the expected length of a run of nodes at some level ℓ of the skip

list is O(1).

Finally, we conclude with the analysis of the search/deletion/insertion of an element in

a skip list (see Figure C.1 for an example about one of these operations).

Lemma C.3. The running time for an insertion, deletion and search of an element in

a skip list takes O(log n) rounds w.h.p.

Proof. Let Ri be number of horizontal edges at level 0 ≤ i ≤ h crossed by a search

operation that starts on the left topmost node of the skip list. Define the random variable

Wh = |R0| + |R1| + · · · + |Rh| to be the amount of horizontal moves performed by the

search algorithm. Observe that each Ri is a geometric random variable of parameter 1−p
and that h is a random variable itself. From Lemma C.1 we know that E [h] = O(log n)
and that Pr (h ≥ 4 log n+ 1) ≤ 1

n3 . Since h is a random variable, Wh is a random sum

of random variables thus we can not make a straightforward use of the properties of sum
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of geometric random variables, rather we can write:

Pr (Wh > 16 log n) = Pr (Wh > 16 log n ∩ h ≤ 4 log n) +Pr (Wh > 16 log n ∩ h > 4 log n)

(C.6)

≤
4 logn∑
h=0

Pr (Wh > 16 log n) +Pr (h > 4 log n) ≤ (1 + 4 log n)Pr (W4 logn > 16 log n) +
1

n3

(C.7)

We notice that W4 logn is a deterministic sum of geometric random variables. Hence we

can use the relation between the upper tail value of a negative binomial distribution

and the lower tail value of a suitably defined binomial distribution to derive upper tail

estimates for the negative binomial distribution (see Appendix ??). Thus, we rewrite

Pr (W4 logn > 16 log n) as Pr (Y ≤ 4 log n) where Y is a binomial random variable with

parameter n = 16 log n and p. Now, we apply a Chernoff bound [39] and by setting

k = 4 log n, p = 1/2 and µ = 8 log n we obtain

Pr (W4 logn > 16 log n) = Pr (Y ≤ 4 log n) ≤
(
8 log n

4 log n

)4 logn( 8 log n

12 log n

)12 logn

=
216 logn

312 logn

(C.8)

=

(
16

27

)4 logn

≤ 1

n3
(C.9)

Therefore,

Pr (Wh > 16 log n) ≤ (1 + 4 log n)

(
1

n3

)
+

1

n3
<

1

n2
if n > 32 (C.10)

Now that we have derived a high confidence bound for Wh we can obtain a bound for

its expected value:

E [Wh] =

16 logn∑
i=1

Pr (Wh ≥ i) +
∑

i>16 logn

Pr (Wh ≥ i) ≤ 16 log n+ c = O(log n) (C.11)

Observe that the first sum is bounded above 16 log n because every probability is less

than 1 and the second one is dominated by
∑

i≥1 1/i
2 which is a constant. Since the

running time of a search operation is bounded by the number of horizontal moves per-

formed at each level plus the number of vertical moves to reach the target node from the

topmost level to the bottom most. We have that the overall running time of a search

procedure starting at the left topmost node in the skip list is T = h +Wh = O(log n)
with probability at least 1 − (1/n2), by applying the union bound we have that T is

O(log n) with probability at least 1 − (1/n) starting at any node in the skip list. To
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conclude, the expected running time is E [T ] = E [h] + E [Wh] = O(log n).
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Figure C.1: Example of the insertion of the element 88 in the skip list. Dashed line
is the search path.

C.2 Spartan’s Reshaping protocol

Level 0

Level 0

Row 0 (00)

Row 1 (01)

Row 2 (10)

Row 3 (11)

Row 0 (000)

Row 1 (001)

Row 2 (010)

Row 3 (011)

Level 0

Level 1

Level 1

Level 2

Level 0

Row 4 (100)

Row 5 (101)

Row 6 (110)

Row 7 (111)

Grow

Shrink

Figure C.2: Example of the reshaping procedure. On the left, the Spartan structure
as a one-dimensional wrapped butterfly of committees. The rows are represented with
their binary representations. Every node in the figure is a random committee of Θ(log n)
nodes and every edge between two committees encodes a complete bipartite graph.
On the right, 2-dimensional butterfly is obtained by increasing the dimensionality of
the left-wrapped butterfly by one. Green nodes are the ones that must be added to
increase the dimensionality of the 1-dimensional wrapped butterfly. Moreover, left-to-
right execution increases the dimensionality by one, and right-to-left execution decreases

the dimensionality by one.

In this section, we provide a detailed description of the reshaping protocol mentioned

in Section 6.2.1. Let α, β ∈ R≥0 such that α > 1 and β ∈ (0, 1) be two constants.

We want the Spartan network S to be enlarged if all the committees have size at most

αc log n, to shrink if all the committees have size at most βc log n, or stay the same

otherwise (c > 0 is the constant hidden by the asymptotic notation). In other words, we

want S to be enlarged or reduced when the wrapped butterfly network size increases or
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decreases by one dimension respectively. Moreover, a general technique to increase the

dimensionality of a k-dimensional butterfly network S by one is to: (1) create a copy

of S in which each row ID (i, j) is “shifted” by 2k i.e., (2k + i, j); (2) “shift” the index

of the levels of the two disjoint butterflies by one; (3) add a new row of 2k+1 nodes to

form the level 0 of the k + 1 dimensional butterfly; and, (5) connect the newly created

level 0 to the two disjoint butterflies using the “standard” butterfly edge-construction

rule [181]. Furthermore, to reduce the dimensionality of a k-dimensional butterfly, we

need to remove the level 0, remove one of the two disjoint k− 1-dimensional butterflies,

and fix the row and levels IDs if needed. Figure C.2 shows an example on how to

perform such operations. We start with the description of the growing procedure. A

new number of nodes n′ = αn is reached such that 2kk ∈ O(N) must be increased to

2k+1(k + 1) ∈ O(N ′) (the number of committees increases from N = O(n/ log n) to

N ′ = O(n′/ log n′)) and update the butterfly structure according to the new size of the

network. Moreover, each step of Algorithm 6 requires at most O(log n) rounds and no

node will send or receive more than O(log n) messages at any round. As a first step,

the committee C(0, 0) is elected as a leader1, and each committee routes a message in

which it expresses its opinion (grow, shrink, stay the same) to the leader committee

(lines 1-2). This can be done very efficiently on hypercubic networks [39, 181], indeed

we have that the leader committee will receive all the opinions in O(logN) rounds [196]

where N ∈ O(n/ log n) is the number of committees in the wrapped butterfly. If the

network agrees on growing, the protocol proceeds with increasing the dimensionality

of the wrapped butterfly by one. Moreover, assume that the k-dimensional butterfly

must be transformed into a k + 1-dimensional one. To this end, the protocol executes

the growing approach described before. Every committee shifts its level ID by one and

promotes two random nodes in each committee to be the committee leaders of the copy

of the butterfly and of the new level 0. Next, all the newly elected committee leaders

will start recruiting random nodes in the network until they reach a committee size of

Θ(log n′) where n′ = αn. Finally, each new committee will create edges according to

the wrapped butterfly construction algorithm [14, 181] and drop the old ones (if any).

The next lemma shows that the growing phase requires O(log n′) rounds w.h.p. where

n′ = αn.

Lemma C.4. The network growth process ensures that every committee has Θ(log n′)

members after O(log n′) rounds w.h.p.

Proof. Let b = 3n′

4N ′ =
3
4 log n

′ we show that after the first phase of the process, each new

committee with gain b nodes. During each round, there are at least n′

4 − N ′ ∈ Ω(n′)

nodes that did not receive any invitation from one of these new committee leaders.

1We can make this assumption because we do not deal with byzantine nodes.
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Moreover, define the event Ev = “The committee leader v recruits a node” then setting

N ′ = n′

c logn′ with c ≥ 1 gives Pr (Ev) ≥
(
n′/4−N ′

n′

) (
1− 1

n′

)N ′
≥ 3

16 . To bound the

expected time needed by a committee to recruit b elements we define a pure-birth Markov

Chain {Xt}t≥0 with state space Ω = {0, 1, 2, . . . , b} and initial state 0 that counts the

number of recruited members. At each round, the Markov Chain at state i < b can

proceed one step forward to state i + 1 with probability pi,i+1 = Pr (Ev) or loop on

i with probability ri,i = 1 − pi,i+1. Observe that each state 0 ≤ i < b is a transient

state, while b is an absorbing state, and that the expected absorption time in state b

is O(b) = O(log n′). To give a tail bound on the absorption time, we study a more

pessimistic random process in which we toss a p-biased coin with p = 3/16 and count

the number of rounds Zi before we get b heads. In this experiment, the expected

number of rounds needed to get b heads is 16
3 b ∈ Θ(log n′). By applying a Chernoff

bound (Theorem 2.14) we can show that for any value of n′ and any fixed R, such that

R ≥ 6E [Z] the probability that we will need more than R log n′ rounds to get b number

of heads is at most 1/n′R. In other words, this means that the Markov Chain will take at

most O(log n′) rounds with probability 1− 1/n′R to reach state b. Finally, by applying

the union bound we can show that every committee will need O(log n′) rounds with

probability 1− 1/n′R−1 to recruit b members.

Furthermore, in the case in which the network agreed on shrinking i.e., reducing the

butterfly dimensionality from k to k− 1 a pool of vacated nodes V is created and all the

nodes in the level 0 and in the committees C(i, j) such that 2k−1 ≤ i < 2k and 1 ≤ j ≤ k

join such pool of nodes. Next, each committee in the remaining butterfly network will

“recruit” b = 3
4 log n

′ (here n′ = βn) random nodes from V. After the recruitment phase,

each remaining node u in V (if any) will probe a random committee in the butterfly. If

such a committee has not reached the target size yet it accepts the request, otherwise u

tries again with a different committee. It follows that the shrinking phase can be done

in O(log n′) rounds w.h.p. where n′ = βn.

Lemma C.5. The network shrinking process ensures that every committee has Θ(log n′)

members after O(log n′) rounds w.h.p.

Proof. Let b = 3n′

4N ′ = 3
4 log n

′ and observe that the analysis of the recruitment phase

is identical to the one for the growing process. Moreover, after Θ(log n) rounds, there

can be n′/4 nodes in V that are not part of any committee. Each node that joined

a committee has one unit of budget that can use to induce a new member into its

committee. Every remaining node u ∈ V probes a random node v asking to join its

committee, if v’s budget is greater than 0 then v accepts the request, otherwise u tries

again with a different node. Furthermore, observe that even if all the remaining nodes V
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found a spot in some committee, there will be n′/2 nodes that would not have exhausted

their budget and each remaining node can find a committee with probability at least

1/2. Finally, by using similar arguments to the growing process we can show that each

remaining node u succeed in finding a committee with high probability in Θ(logn′)

rounds. And by using the union bound we can guarantee that each remaining node can

find and become part of a committee in Θ(log n′) w.h.p.

Algorithm 6: Reshape protocol.

Agreement Phase.
1 The committee C(0, 0) is elected as a leader ℓ.
2 Every committee in S routes its opinion to ℓ.
3 if Agreement on Growing then

Growing Phase. // Here n′ = αn

4 Each committee C(i, j) for 0 ≤ i < 2k and 0 ≤ j < k:
(a) Increases its committee ID from C(i, j) to C(i, j + 1).
(b) Promotes a random node u among the available committee members to
be the leader of the new committee C(j · 2k−1 + i, 0).
(c) Promotes a random node v among the available committee members to
be the leader of the new committee C(2k−1 + i, j + 1).

5 Each newly generated committee leader actively recruits new nodes in their
committee until it gets Θ(log n′) committee members.

6 Each new committee creates complete bipartite edges according to the Wrapped
Butterfly construction algorithm (see [14, 181]).

7 else if Agreement on Shrinking then
Shrinking Phase. // Here n′ = βn

8 Each member in the committees C(i, 0) for 0 ≤ i < 2k and C(i, j) for

2k−1 ≤ i < 2k 1 ≤ j ≤ k “vacate” its committee and joins a pool of unassigned
nodes.

9 Each node in the pool of unassigned nodes will randomly join one of the
N ′ = O(n′/ log n′) new committees such that each committee has Θ(log n′)
nodes.

10 else
11 Do nothing.
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Computer Society, Linköping, 2001. doi: 10.1109/P2P.2001.990419. URL https:

//doi.org/10.1109/P2P.2001.990419.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/3-540-39118-5_19
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1109/P2P.2001.990419
https://doi.org/10.1109/P2P.2001.990419


Bibliography 155

[83] Satoshi Nakamoto and et Al. Bitcoin core. https://github.com/bitcoin/bitcoin,

2008. Accessed: 2022-07-22.

[84] Andreas M. Antonopoulos. Mastering Bitcoin: Programming the open blockchain.

O’Reilly Media, Inc., 2nd edition, 2017. ISBN 1491954388.

[85] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven

Goldfeder. Bitcoin and cryptocurrency technologies: a comprehensive introduction.

Princeton University Press, Princeton, 2016.

[86] Bitcoin Core. Bitcoin Core 0.11 (ch 4): P2P Network. https://en.bitcoin.it/wiki/

Bitcoin Core 0.11 (ch 4): P2P Network, 2022. Accessed: 2022-07-22.

[87] Addy Yeow. Global Bitcoin Nodes Distribution. https://bitnodes.io/, 2013. Ac-

cessed: 2022-07-22.

[88] Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton, Andrew
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[134] Özalp Babaoglu, Moreno Marzolla, and Michele Tamburini. Design and implemen-

tation of a P2P cloud system. In Proceedings of the ACM Symposium on Applied

Computing, SAC 2012, Riva, Trento, Italy, March 26-30, 2012. ACM, 2012.

[135] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.

A scalable content-addressable network. In Proceedings of the 2001 conference on

Applications, technologies, architectures, and protocols for computer communica-

tions, 2001.

[136] Ion Stoica, Robert Tappan Morris, David Liben-Nowell, David R. Karger, M. Frans

Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer

lookup protocol for internet applications. IEEE/ACM Trans. Netw., 2003.

[137] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: a fault-

tolerant wide-area application infrastructure. Comput. Commun. Rev., 2002.

[138] Michael A. Bender, Jeremy T. Fineman, Mahnush Movahedi, Jared Saia, Var-

sha Dani, Seth Gilbert, Seth Pettie, and Maxwell Young. Resource-competitive

algorithms. SIGACT News, 2015.

[139] Dana Angluin, James Aspnes, Jiang Chen, Yinghua Wu, and Yitong Yin. Fast con-

struction of overlay networks. In SPAA 2005: Proceedings of the 17th Annual ACM

Symposium on Parallelism in Algorithms and Architectures, July 18-20, 2005, Las

Vegas, Nevada, USA. ACM, 2005.

[140] Robert Gmyr, Kristian Hinnenthal, Christian Scheideler, and Christian Sohler.

Distributed monitoring of network properties: The power of hybrid networks.

In 44th International Colloquium on Automata, Languages, and Programming,

ICALP 2017, July 10-14, 2017, Warsaw, Poland, LIPIcs. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2017.

[141] Thorsten Götte, Kristian Hinnenthal, and Christian Scheideler. Faster construc-

tion of overlay networks. In Structural Information and Communication Complex-

ity - 26th International Colloquium, SIROCCO 2019, L’Aquila, Italy, July 1-4,

2019, Proceedings, Lecture Notes in Computer Science. Springer, 2019.



Bibliography 161

[142] Thorsten Götte, Kristian Hinnenthal, Christian Scheideler, and Julian Werth-

mann. Time-optimal construction of overlay networks. In PODC ’21: ACM Sym-

posium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,

2021. ACM, 2021.

[143] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed al-

gorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst.,

1983.

[144] Soumyottam Chatterjee, Gopal Pandurangan, and Nguyen Dinh Pham. Dis-

tributed MST: A smoothed analysis. In ICDCN 2020: 21st International Con-

ference on Distributed Computing and Networking, Kolkata, India, January 4-7,

2020. ACM, 2020.

[145] Leslie G. Valiant. A scheme for fast parallel communication. SIAM J. Comput.,

1982.

[146] Eli Upfal. An o(log(n)) deterministic packet-routing scheme. J. ACM, 1992.

[147] Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch. Batch-parallel euler tour

trees. In Proceedings of the Twenty-First Workshop on Algorithm Engineering and

Experiments, ALENEX 2019, San Diego, CA, USA, January 7-8, 2019. SIAM,

2019.

[148] Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Recent advances in

fully dynamic graph algorithms - A quick reference guide. ACM J. Exp. Algorith-

mics, 2022.

[149] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Commu-

nications of the ACM, 1990.

[150] Hagit Attiya, Sweta Kumari, Archit Somani, and Jennifer L. Welch. Store-collect

in the presence of continuous churn with application to snapshots and lattice agree-

ment. Inf. Comput., 2022.

[151] Miklós Ajtai, János Komlós, and Endre Szemerédi. An o(n log n) sorting network.
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[185] Bruce M. Maggs and Berthold Vöcking. Improved routing and sorting on multi-

butterflies. Algorithmica, 2000.



Bibliography 165

[186] John Augustine, Mohsen Ghaffari, Robert Gmyr, Kristian Hinnenthal, Chris-

tian Scheideler, Fabian Kuhn, and Jason Li. Distributed computation in node-

capacitated networks. In The 31st ACM on Symposium on Parallelism in Al-

gorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019.

ACM, 2019.

[187] John Kit Tang, Mirco Musolesi, Cecilia Mascolo, and Vito Latora. Temporal dis-

tance metrics for social network analysis. In Proceedings of the 2nd ACM Work-

shop on Online Social Networks, WOSN 2009, Barcelona, Spain, August 17, 2009.

ACM, 2009.

[188] Leonardo Maccari, Lorenzo Ghiro, Alessio Guerrieri, Alberto Montresor, and Re-

nato Lo Cigno. On the distributed computation of load centrality and its appli-

cation to DV routing. In 2018 IEEE Conference on Computer Communications,

INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018. IEEE, 2018.

[189] Tianming Zhang, Yunjun Gao, Jie Zhao, Lu Chen, Lu Jin, Zhengyi Yang, Bin Cao,

and Jing Fan. Efficient exact and approximate betweenness centrality computation

for temporal graphs. In Proceedings of the ACM on Web Conference 2024, WWW

2024, Singapore. ACM, 2024.

[190] Filippo Brunelli, Pierluigi Crescenzi, and Laurent Viennot. Making temporal be-

tweenness computation faster and restless. In To appear in KDD 2024. ACM,

2024.

[191] Michelle Girvan and Mark EJ Newman. Community structure in social and bio-

logical networks. Proceedings of the national academy of sciences, 2002.

[192] Lutz Oettershagen and Petra Mutzel. An index for temporal closeness computation

in evolving graphs. In Proceedings of the 2023 SIAM International Conference on

Data Mining, SDM 2023. SIAM, 2023.

[193] Ulrik Brandes and Christian Pich. Centrality estimation in large networks. Int.

J. Bifurc. Chaos, 2007.
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