
Combinatorics of Computation Spring 2025

The Probabilistic Method

Prof. Jara Uitto Antonio Cruciani

Overview

The probabilistic method is a tool for proving the existence of objects. The underlying principle
is simple: If the probability of selecting an object with the required properties from a well-defined
sample space is positive, then the sample space must contain such an object, and therefore such
an object exists. Despite of this idea being simple, its application often involves sophisticated
combinatorial arguments. Furthermore, from an algorithmic point of view, we are interested in
explicit constructions of objects and not just the proof of their existence. In many cases the proofs
of existence can be in fact converted into efficient randomized algorithms and sometimes into
efficient deterministic algorithms: this process is called derandomization. We will see examples of
both randomized and deterministic construction algorithms arising from the probabilistic method.

1 The Basic Counting Argument

1.1 Edge Coloring

As the first example, consider the problem of coloring the edges of a complete graph with two colors
such that there are no large cliques in which all the edges have the same color. We will denote by
Kn a complete graph on n vertices and will be interested in Kk ⊆ Kn, i.e., complete graphs on
k ≤ n vertices contained in Kn.

Theorem 1. If
(
n
k

)
< 2(

k
2)−1, then it is possible to color the edges of Kn with two colors such that

there exists no monochromatic Kk ⊆ Kn.

Proof. First, note that there are 2(
k
2) possible colorings of a clique of size k, because it contains

exactly
(
k
2

)
edges. Furthermore, there are

(
n
k

)
different k-vertex cliques in Kn, which we number

from 1 to
(
n
k

)
.

Now, let us denote by Ai the event that the i-th clique of k vertices is monochromatic. Then,

Pr(Ai) = 2

2(
k
2)

= 21−(
k
2), because out of all possible colorings of the edges of Kk, only two are

monochromatic. By using the union bound, we get

Pr
(
A1 ∨ · · · ∨A(nk)

)
≤

(
n

k

)
· 21−(

k
2) < 1,

from which we conclude that

Pr
(
¬A1 ∧ · · · ∧ ¬A(nk)

)
= 1− Pr

(
A1 ∨ · · · ∨A(nk)

)
> 0.

1

2 The Expectation Argument

Another approach, sometimes easier, for proving that an object with certain properties exists is
to use an averaging argument. More specifically, in a discrete probability space a random variable
must with positive probability assume at least one value that is no greater than its expectation and
at least one value that is not smaller than its expectation

2.1 Finding a Large Cut

Let us consider the problem of finding a large cut in an undirected graph, where a cut is a partition
of the vertices into two disjoint sets and its size is equal to the number of edges whose endpoints
are on different sides of the partition. The problem of finding a maximum cut is NP-hard. Using
the probabilistic method, it is easy to show that the value of the maximum cut must be at least 1

2
the number of edges.

Theorem 2. In an undirected graph G with m edges, there is always a cut of size at least m
2 .

Proof. We construct a random cut by assigning the vertices randomly to the two sides of the cut.
For every edge e, we define a binary random variable Xe and set

Xe =

{
1 If e is in the cut

0 Otherwise

Then the probability Pr(e ∈ C(A,B)) = Pr(Xe = 1) = 2/4 = 1/2. That is because, the endpoints
of e = (u, v) can be both in A or in B, and u ∈ A, v ∈ B or v ∈ A, u ∈ B.

Then, E[Xe] = 1
2 . Moreover, let us define X =

∑
e∈E Xe and notice that these Xe are not

independent. However, we are interested in X’s expected value and the linearity of expectation
does not “care” about dependencies. Thus

E[X] =
∑
e∈E

E[Xe] =
m

2
.

We conclude that there must exist at least one cut (A,B) of size not smaller than m
2 .

Let us now see how we can transform the proof argument into an efficient algorithm. We will first
show how to obtain a Las Vegas algorithm.

It is easy to randomly choose a partition as described in the proof. For a partition (A,B) of the
vertices, let C(A,B) be the capacity of the cut (meaning, the number of edges with one endpoint
on both sides of the cut). Then, let p = Pr

(
C(A,B) ≥ m

2

)
. Then,

m

2
= E[C(A,B)] =

∑
i<m/2

i ·Pr (C(A,B) = i)+
∑

i≥m/2

i ·Pr (C(A,B) = i) ≤ (1− p)
(m
2

− 1
)
+ p ·m,

as the capacity of any cut is upper bounded by m. But this implies that p ≥ 1
m/2+1 .

The algorithm: Generate a random cut and determine its capacity. Repeat until a cut of capacity
at least m/2 has been found. The expected number of repetitions is 1

p ≤ m
2 + 1.

2

3 Derandomization Using Conditional Expectations

3.1 Finding a Large Cut

We will now try to derive a deterministic algorithm for determining a cut of size at least m/2.
First, we number the vertices v1 to vn and denote by Si the set where vi is placed, meaning A or
B. Imagine we have deterministically placed vertices v1, . . . , vk. Then, let E[C(A,B) | S1, . . . , Sk]
denote the conditional expectation of the cut capacity given that we placed vertex vi on side
Si ∈ {A,B} for 1 ≤ i ≤ k. We will show inductively how to place the next vertex such that

E[C(A,B) | S1, . . . , Sk] ≤ E[C(A,B) | S1, . . . , Sk, Sk+1],

from which it follows that

E[C(A,B)] ≤ E[C(A,B) | S1, . . . , Sn].

Notice that the last inequality states exactly what we wanted, since it represents the value of the
cut determined by our placement algorithm.

Now, for k = 1 it holds that E[C(A,B)] = E[C(A,B) | S1] because by symmetry it does not matter
where the first vertex is placed. For the induction step, consider placing vk+1 randomly. Then,

E[C(A,B) | S1, . . . , Sk] =
1

2
E[C(A,B) | S1, . . . , Sk, A] +

1

2
E[C(A,B) | S1, . . . , Sk, B].

What we can do is compute both quantities on the right and place vk+1 in the set that yields the
larger expectation. If we do so, our placement will satisfy

E[C(A,B) | S1, . . . , Sk] ≤ E[C(A,B) | S1, . . . , Sk, Sk+1].

Computing the expectations can be done in linear time: for edges having both endpoints among
v1, . . . , vk+1 we know their contribution and all other edges contribute with probability 1

2 . Since
the contribution of these other edges is the same for both placements, we simply need to place vk+1

such that we cut at least half of the edges connecting it to vertices v1, . . . , vk.

The algorithm then has the following simple form: Place the first vertex arbitrarily. Place each
successive vertex on the side with fewer neighbors, breaking ties arbitrarily.

This simple greedy algorithm guarantees a cut with at least m/2 edges. To verify this, denote by
d′k+1 the number of edges connecting vk+1 to {v1, . . . , vk}. We place v1 arbitrarily and vk+1, k ≥ 1
such that at least d′k/2 edges are cut. Then,

n∑
k=1

d′k
2

=
1

2

n∑
k=1

d′k =
m

2
.

References

[1] Mitzenmacher, Michael and Upfal, Eli, Probability and computing: Randomization and proba-
bilistic techniques in algorithms and data analysis, Cambridge university press, 2017,

3

