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We will show how to use the tools discussed in the first lesson to analyze some randomized algo-
rithms.

1 Again on random graphs

Let G ∼ G(n, p) be the Erdős-Rényi random graph with n vertices and edge appearance probability
p ∈ [0, 1]. Let T be the number of triangles (i.e., sets of 3 vertices with all 3 edges between them
present) in G. What is the expected number of triangles in G(n, p) as a function of n and p? For
each triple {i, j, k} ⊆ [1, n], define the indicator random variable:

Xi,j,k =

{
1 If all 3 edges (i, j), (j, k), (k, i) ∈ E

0 Otherwise

Then the number of triangles is the summation over all the possible triples

T =
∑

{i,j,k}∈([1,n]
3 )

Xi,j,k

Where
(
[1,n]
3

)
= {{i, j, k} ⊆ [1, n] : i < j < k}. Since each Xi,j,k is a Bernoulli random variable with

E[Xi,j,k] = Pr ((i, j), (j, k), (k, i) ∈ E) = p3

Then we can compute the expected number of triangles using the linearity of expectation

E[T ] =

(
n

3

)
· p3

And what about 4-cliques?

As exercise.

2 An (7/8) approximation for MAX 3SAT

Consider the MAX-3SAT Problem:

Input: A collection of clauses C1, C2, . . . , Cm over n variables in 3-CNF (e.g. F = (x1 ∨ x2 ∨ x3)∧
(x4 ∨ x1 ∨ x2)

Goal: Find a truth assignment to x1, . . . , xn, that satisfies the maximum number of clauses.
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Idea: Randomly and independently assign T/F values to x1, . . . xn.

We can show, that this simple technique gives a (7/8) approximation for the MAX-3SAT problem.

Let

Xi =

{
1 If clause i is T

0 Otherwise

The Pr(Xi = 0) =
(
1
2

)3
Thus, Pr(Xi = 1) = 1−

(
1
2

)3
= 7

8 Let X =
∑m

i=1Xi, this is the number of
clauses that are satisfied

E[X] =
m∑
i=1

7

8
=

7

8
·m

Definition 1. An algorithm A for a maximization problem achieves an approximation factor α ≤ 1
if for all inputs we have:

OPT (A)
OPT (⋆)

≥ α

Where OPT (⋆) is the optimum for the given problem and OPT (A) is the solution computed by
algorithm A.

3 Single Source Gossip

Assume you are on a clique of n nodes. And that a node s has a message m. s wants to send its
message to all its neighbors (i.e., nodes in the graph). At each round t, s is allowed to pick one of
its neighbors v ∈ N(s) uniformly at random and send its message to v. What is the expected time
that s needs to inform all its neighbors?

We can model this problem as a coupon collector problem. Indeed, we can define T as the total
number of rounds we need to inform all the neighbors. Now, we are interested in finding E[X]. As
for coupon collector, let us define Xi be number of rounds to inform i− 1 different nodes.

At that point, there are n− i informed nodes, and the probability of contacting one of them is

pi = 1− i− 1

n
=

n− (i− 1)

n

Thus Xi’s expected value is

E[Xi] =
1

pi
=

n

n− i+ 1

Hence, the total expected time T is

E[T ] =
n−1∑
i=1

E[Xi] =
n−1∑
i=1

n

n− i+ 1
= n ·

n∑
i=2

1

i
= n · (Hn − 1) = O(n log n)
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4 Triangle Counting

Algorithm 1: Triangle Counting Estimator

Input: Graph G = (V,E), integer k
Output: Estimated triangle count Tv for each vertex v ∈ V

1 foreach v ∈ V do
2 Tv ← 0;

3 for i = 1 to k do
4 sample edge (u, v) uniformly at random from E;
5 foreach w ∈ N(u) do
6 if w ∈ N(v) then

; // (u, v, w) forms a triangle

7 Tv ← Tv +
m
k ;

8 return 1
3

∑
v∈V Tv;

Let us now analyze Algorithm 1. For starters, let us notice that the sum of the number of triangles
incident to a vertex v, ∆v, is equal to 3 times the total number of triangles in the graph:∑

v∈V
∆v = 3∆

That is because each triangle contributes exactly 1 to the triangle count of each of its 3 vertices.
Formally, let T denote the set of all triangles in the graph:

T = { {x, y, z} ⊆ V | (x, y), (y, z), (z, x) ∈ E }.

By definition, |T | = ∆. We can rewrite:∑
v∈V

∆v =
∑
v∈V

∑
t∈T

1[v ∈ t] =
∑
t∈T

∑
v∈V

1[v ∈ t].

Observe that for each triangle t = {x, y, z}, we have:∑
v∈V

1[v ∈ t] = |{x, y, z}| = 3.

Thus: ∑
t∈T

∑
v∈V

1[v ∈ t] =
∑
t∈T

3 = 3|T | = 3∆.

Let us now focus on the sampling algorithm, for each iteration of the For loop in line 3, the algorithm

• Picks an edge (u, v) form E with probability 1/m

• For each vertex w in the neighborhood of u checks whether it shares an edge with the node
v. If this is the case, then the number of triangles incident in Tv is incremented by this magic
value m/k.
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Let us analyze the expected value of Tv. Observe that Tv is a random variable that is increased
with probability 1/m.

E[Tv] =

k∑
i=1

Pr(Sample (v, u) from E)
∑

w∈N(v)

1[(w, u) ∈ E] · m
k

= k · 1
m
·∆v ·

m

k
= ∆v

Tv is said to be an unbiased estimator of ∆v. Now define,

T̂ =
1

3

∑
v∈V

Tv

Let us compute its expectation,

E
[
T̂
]
= E

[
1

3

∑
v∈V

Tv

]
=

1

3
E

[∑
v∈V

Tv

]
=

1

3

∑
v∈V

E[Tv] =
1

3

∑
v∈V

∆v =
1

3
(3∆) = ∆.
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