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1 Events and Probability

We recap basics in probability theory based on the book by Mitzenmacher and Upfal [1].

Some Definitions. A probabilistic statement is always made with respect to some probability
space.

Definition 1. A probability space is a triple (Ω,F ,Pr), where:

• Ω is the sample space, i.e., the set of all possible outcomes of a random experiment.

• F ⊆ 2Ω is a family of events, i.e., subsets of Ω.

• Pr : F → R is the probability function that assigns values to events such that:

– Pr(E) ∈ [0, 1] for all E ∈ F ,

– Pr(Ω) = 1,

– For any finite or countable sequence of disjoint events E1, E2, . . . , we have Pr
(⋃

i≥1Ei

)
=∑

i≥1 Pr(Ei).

In this course, the sample space Ω will be mostly finite and F will be equal to the power set 2Ω.

We use standard set notation for events:

• E1 ∩ E2 means both events E1 and E2 occur,

• E1 ∪ E2 means either or both of the events occur,

• E1 \ E2 means E1 occurs, but E2 does not,

• E means that E does not occur, which happens with probability 1− Pr[E].

Example 1. Suppose we roll two dice, so Ω = [1, 6]× [1, 6]. Let E1 be the event that the first die
shows 1: E1 = {(1, j) : j ∈ [1, 6]}. Let E2 be the event that the second die shows 1: E2 = {(i, 1) :
i ∈ [1, 6]}.

• E1 ∩ E2 = {(1, 1)} is the event that both dice show 1.

• E1 \ E2 is the event that the first die shows 1 but the second does not.

Lemma 2. Let E1, E2, . . . be events.
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• Pr(E1 ∪ E2) = Pr(E1) + Pr(E2)− Pr(E1 ∩ E2)

• Pr
[⋃

i≥1Ei

]
≤
∑

i≥1 Pr(Ei) this is called the union bound.

Figure 1: Area of union is bounded by sum of areas of the circles.

Surprisingly, the events are completely arbitrary, and do not need to be independent. In terms of
Figure 1, the union bound just says that the area (i.e., probability mass) in the union is bounded
above by the sum of the areas of the circles. The bound is tight if the events are disjoint; otherwise
the right-hand side is larger, due to double-counting. (It’s like inclusion-exclusion, but without any
of the correction terms.). In most of the applications, the events E1, E2, . . . Ek are often bad events
that we’re hoping don’t happen; the union bound says that as long as each event occurs with low
probability and there aren’t too many events, then with high probability none of them occur

Example Email Server: Assume we run a server that sends emails to 5 users: Alice, Bob, Carol,
Dave and Eve.

Due to some glitch, each email independently fails to deliver with probability p (say p = 0.01).
Now we have the following concern: What’s the probability that at least one user does not receive
any email?

Let us define the bad event Ai = email to user i fails, then Pr(Ai) = p, and we want to know

Pr

(
5⋃

i=1

Ai

)
= Pr(at least one email fails)

Using the union bound:

Pr(At least one failure) ≤
5∑

i=1

Pr(Ai) = 5 · p = 5 · 0.01 = 0.05

Independence and Conditional Probability
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Definition 3. Given some events, we say:

• Two events A and B are independent if and only if Pr(A ∩B) = Pr(A) · Pr(B).

• Events A1, A2, . . . , Ak are mutually independent if for all subsets S ⊆ [1, k], it holds that

Pr

[⋂
i∈S

Ai

]
=
∏
i∈S

Pr(Ai).

Definition 4. The conditional probability of A given B is defined as:

Pr(A | B) =
Pr(A ∩B)

Pr(B)
.

Intuition: Look at the probability of A∩B while knowing that B happened. This corresponds to
reducing the sample space to the cases in which B occurred.

Using the previous example of rolling two dice: Let B be the event that the first die shows 1. Let
A be the event that both dice show 1. Then:

Pr(A | B) =
Pr(A ∩B)

Pr(B)
=

1/36

6/36
=

1

6
.

Why is that?

We are rolling two dice, thus

• The sample space Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}

• The total number of outcomes is 36

• Each outcome has the same probability Pr({i, j}) = 1
6 , i, j ∈ [1, 6]

Let us define the two events:
A = Both dice show 1

Observe that there is only one outcome (1, 1), thus Pr(A) = 1
36 .

B = first die shows 1

This includes all outcomes of the form (1, j) for j ∈ [1, 6], i.e., B = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)},
so Pr(B) = 6

36 . Putting all together we have that

• A ∩B = {(1, 1)}, because both dice showing 1 implies the first die showing 1

• Pr(A ∩B) = 1
36

• Pr(B) = 6
36

If A and B are independent, then Pr(A | B) = Pr(A), as in the example. The intuition is that if
the events are independent, the information that B occurred does not change anything.
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Law of Total Probability. The law of total probability characterizes the probability of an event
via a case distinction a partition of the sample space.

Theorem 5 (Law of Total Probability). Let events E1, . . . , En be mutually disjoint and satisfy⋃n
i=1Ei = Ω. Then for any event A,

Pr(A) =

n∑
i=1

Pr(A ∩ Ei) =

n∑
i=1

Pr(A | Ei) · Pr(Ei).

Proof. By disjointness and the assumption
⋃n

i=1Ei = Ω, we get

Pr(A) =
n∑

i=1

Pr(A ∩ Ei).

The second equality follows from the definition of conditional probability.

2 Discrete Random Variables and Expectation

Random Variables Sometimes we are interested in a function of the occurring event rather than
in the event itself. For example, when tossing two dice, we might be interested in the sum of the
two numbers rather than in the exact outcome. Random variables model such scenarios.

Definition 6. A random variable X : Ω → R is a real-valued function defined on the sample space.
A discrete random variable takes only a finite or countably infinite number of values.

It is common to write “X = x” for the event {ω ∈ Ω : X(ω) = x}. Then:

Pr(X = x) =
∑

ω∈Ω:X(ω)=x

Pr(ω)

Example: When rolling two dice, let X be the random variable representing the sum of the two
dice: X((i, j)) = i+ j for all (i, j) ∈ Ω. Then:

Pr(X = 4) =
3

36
=

1

12
,

since the outcomes (1,3), (2,2), and (3,1) all sum to 4.

Independence of Random Variables.

Definition 7. Random variables X and Y are independent if and only if

Pr(X = x ∧ Y = y) = Pr(X = x) · Pr(Y = y)

for all x and y.

Definition 8. Random variables X1, X2, . . . , Xn are mutually independent if for any subset S ⊆
[1, n] and values xi for i ∈ S,

Pr

(⋂
i∈S

Xi = xi

)
=
∏
i∈S

Pr(Xi = xi)
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Expectation

The expectation of a random variable can be thought of as the “average” value it attains.

Definition 9. The expectation (or expected value) of a discrete random variable X is:

E[X] =
∑
x

x · Pr[X = x],

where the sum is over all values in the range of X.

Note: For countably infinite values, the expectation might be unbounded. Example: If X takes
value 2i with probability 1/2i for i ≥ 1, then:

∞∑
i=1

1

2i
= 1 (a valid probability distribution)

but

E[X] =

∞∑
i=1

2i · 1

2i
=

∞∑
i=1

1 = ∞.

Dice Example: Let X be the sum of two dice. Then:

E[X] =
1

36
· 2 + 2

36
· 3 + 3

36
· 4 + · · ·+ 1

36
· 12 = 7.

Linearity of Expectation

Theorem 10. Let X1, . . . , Xn be random variables with finite expectation. Then:

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi]

Proof. Here we prove the statement for two random variables X and Y , the general case follows by
induction and is left as an exercise. The summations must be over the ranges of the corresponding
random variables:

E [X + Y ] =
∑
i

∑
j

(i+ j) Pr((X = i) ∩ (Y = j)) (Definition 1)

=
∑
i

∑
j

iPr((X = i) ∩ (Y = j)) +
∑
i

∑
j

j Pr((X = i) ∩ (Y = j))

=
∑
i

i
∑
j

Pr((X = i) ∩ (Y = j)) +
∑
j

j
∑
i

Pr((X = i) ∩ (Y = j)) (Thm. 5)

=
∑
i

iPr(X = i) +
∑

j Pr(Y = j) = E[X] +E[Y ]
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Dice Again: Let Xi be the value shown by die i. Then E[Xi] =
1
6

∑6
j=1 j = 21/6 = 3.5, so

E[X1 +X2] = 3.5 + 3.5 = 7.

Note: This linearity holds even if the Xi are not independent.

Secret Santa: Imagine n friends all put their names into a hat for their Secret Santa. Everyone
picks a name at random (including possibly their own). What is the expected number of people
who draw their own name?

We have a lot of dependencies in this experiment: “if Alice picks Bob, then Bob cannot pick
himself!! This is all dependent!”

Unfortunately, the choices are not independent, they’re tied together because everyone is picking
from the same hat without replacement.

So how do we compute the expected number of “self-draws” ?

This is where linearity of expectation saves the day!

Let X be the number of people who draw their own name. Define the indicator random variable

Xi =

{
1 if i draws their own name

0 Otherwise

Then,

X =

n∑
i=1

Xi And E[X] =

n∑
i=1

E[Xi]

Even though the Xi’s are dependent, linearity of expectation does not care at all. So we can just
compute

E[Xi] = Pr(person i draws their own name) =
1

n

So

E[X] =

n∑
i=1

1

n
= 1

Even with all the dependencies, the expected number of people who draw their own name is always
1, no matter how big n is.

Magic!

A “more practical” example: Consider the following random graph G(n, p), where n is the
number of nodes and each edge between n nodes is added independently with probability p.

What is the expected number of isolated vertices?

Xi =

{
1 if node i is isolated

0 Otherwise
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Clearly, the total number of isolated vertices is

X =
n∑

i=1

Xi

By linearity of expectation we have

E[X] =
n∑

i=1

E[Xi]

Now we compute E[Xi]. Node i is isolated if none of the n− 1 possible edges between i and other
vertices exists. Each of those n − 1 edges is included independently with probability p, so the
probability that none of them exists is

Pr(node i is isolated) = (1− p)n−1

So

E[X] = n · (1− p)n−1

Even though Xi’s are dependent (whether one vertex is isolated affects others) the linearity of
expectation lets us ignore that. We don’t have to compute nasty joint probabilities.

Lemma 11. For any constant c and random variable X, we have:

E[cX] = c ·E[X]

As an Exercise

Conditional Expectation Analogously to the conditional probability, we can define the condi-
tional expectation of a random variable.

Definition 12. The conditional expectation of X given Y = y is:

E[X | Y = y] =
∑
x

x · Pr[X = x | Y = y]

where the sum is over all x in the range of X, i.e., all x such that X(r) = x for some r.

Dice Example: Suppose we independently roll two dice. Let Xi be the number shown on the i’th
die and let X be the sum of the two. Then we have

E[X | X1 = 2] =
∑
x

x · Pr(X = x | X1 = 2) =
8∑

x=3

x · 1
6
= 5.5

We can get something analogous to the law of total probability for the expectation of a random
variable X. In this case, the case distinction is over the possible values y of a second random
variable Y . The law of total expectation states that the expectation of X can be computed as the
sum over the possible outcomes y of Y of the conditional expectation of X assuming that Y = y
times the probability that we have Y = y.
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Lemma 13 (Law of total expectation).

E[X] =
∑
y

E[X | Y = y] · Pr(Y = y)

where the sum is over all y in the range of Y , i.e., all Y such that Y (r) = y for some r.

Proof. ∑
y

E[X | Y = y] · Pr(Y = y) =
∑
y

Pr(Y = y) ·
∑
x

x · Pr(X = x | Y = y)

=
∑
y

Pr(Y = y)
∑
x

Pr(X = x ∩ Y = y)

Pr(Y = y)
=
∑
x

∑
y

x · Pr(X = x ∩ Y = y)

=
∑
x

x · Pr(X = x) = E[X]

Before we showed the linearity of expectation for random variables that can be written as sum of
other random variables. The same holds for the conditional expectation of such random variables.

Lemma 14. Given n random variables X1, . . . , Xn with finite expectation, then

E

[
n∑

i=1

Xi | Y = y

]
=

n∑
i=1

E[Xi | Y = y]

We can also look at E[Y | Z] (this is different from E[Y | Z = z]). We should think of this as a
function from the range of Z to the reals that takes the value E[Y | Z = z] when Z = z. Thus,
E[Y | Z] is a random variable itself.

Example (rolling two dice):

E[X | X1] =
∑
x

x · Pr(X = x | X1) =

X1+6∑
x=X1+1

x · 1
6
= X1 + 3.5

We can also look at the expectation of E[Y | Z]. The following theorem shows that Z becomes
irrelevant in this case.

Theorem 15.
E[E[Y | Z]] = E[Y ]

Proof. We have

E[E[Y | Z]] =
∑
z

E[Y | Z = z] · Pr(Z = z) = E[Y ]

According to the law of total expectation.
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3 Random Variables

This and the following section is based on Chapters 2.2 and 2.4 in the book by Mitzenmacher and
Upfal [1]. We review three common random variables.

Bernoulli random variables. Assume to flip a coin that lands head with probability p. This
can be modeled by a Bernoulli random variable:

Definition 16. A Bernoulli random variable X with parameter p satisfies

Pr (X = i) =

{
p, if i = 1

1− p, Otherwise

For the expectation of a Bernoulli random variable X, we have

E [X] = p · 1 + (1− p) · 0 = p = Pr (X = 1)

A Bernoulli random variable can be used to model any scenario where we do a random experiment
that succeeds with some probability p.

Binomial Random Variables. Assume to flip a coin n consecutive times. The overall number
of heads can be modeled by a Binomial random variable.

Definition 17. A binomial random variable X with parameters n and p, satisfies for every 0 ≤
k ≤ n,

Pr (X = k) =

(
n

k

)
pk(1− p)k

That is, the binomial random variable X is equal to k if and only if there are k heads and n−k tails
in the sequence of n coin flips. By using the binomial formula we can see that

∑n
k=0 Pr (X = k) = 1,

a necessary condition for the defined probability function to be well defined. The expectation of
a binomial random variable can be written as the sum of n-Bernoulli random variables. Thus,
E[X] = np (using the linearity of expectation).

Geometric Random Variables. Assume we flip a coin until we get our first heads. What is the
distribution of the number of flips we need? How long can we expect to wait until we see heads?

Definition 18. A geometric random variable X with parameter p satisfies, for every k = 1, 2, . . . ,

Pr (X = k) = (1− p)k−1p.

Using a geometric series argument (with basis 1− p), we get that

∞∑
k=1

Pr (X = k) =

∞∑
k=1

p(1− p)k−1 = p

∞∑
k=1

(1− p)k−1 = p · 1

1− (1− p)
= p · 1

p
= 1.

Again, this is necessary for the probability function to be well defined.
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Lemma 19. A geometric random variable is memory-less, i.e., for any k > 0, it holds that

Pr (X = k + t | X > t) = Pr (X = k) .

Proof as exercise.

Lemma 20. For the expected value of a geometric random variable, it holds that E[X] = 1/p.

Proof. We have that

E[X] =

∞∑
k=1

kPr[X = k] =

∞∑
k=1

k∑
i=1

Pr[X = k] =

∞∑
i=1

∞∑
k=i

Pr[X = k] =

∞∑
i=1

∞∑
k=i

(1− p)k−1p.

=
∞∑
i=1

(1− p)i−1p
∞∑
k=0

(1− p)k =
∞∑
i=1

(1− p)i−1p · 1
p
=

∞∑
i=1

(1− p)i−1 =
1

1− (1− p)
=

1

p
.

There is also another approach to computing this expectation using the memory-less property.

As exercise.

4 Coupon Collector

Consider the following scenario. We are regularly buying some item, say boxes of cereals, each of
which contains one of n different coupons. Once we own all n different coupons we win a prize.
Suppose that the coupons in the boxes are chosen independently and uniformly at random from all
n different coupons. We are interested in the following question:

“how many times do you need to buy items until we have collected all the different coupons?”

We can model this problem by using a random variable X that denotes the number of buys we
need, and we try to find E[X]. For this purpose, we define Xi to be the number of times you buy
a box while owning i− 1 different coupons. Then clearly

X =
n∑

i=1

Xi.

If we collected i− 1 different coupons so far, the probability of getting one that we do not own yet
is pi :=

n−(i−1)
n = n−i+1

n . Hence, Xi is a geometric random variable with parameter pi, and

E[Xi] =
1

pi
=

n

n− i+ 1
.

Therefore,

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] =

n∑
i=1

n

n− i+ 1
= n ·

n∑
i=1

1

i
= n ·Hn = n · (log n+Θ(1)),

where Hn is the n-th harmonic number.
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Fact 21. The harmonic number H(n) :=
∑n

i=1
1
i satisfies:

log n ≤ H(n) ≤ log n+ 1.

Proof. Recall that log n =
∫ n
1

1
xdx. Moreover,

H(n)− 1 =

n∑
i=2

1

i
≤
∫ n

1

1

x
dx ≤

n∑
i=1

1

i
= H(n).

In summary, the expected number of boxes we need to buy is at most n log n + Θ(n). This is
(maybe) surprisingly little, as it is only a logarithmic factor more than the obvious lower bound of
n.
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